PlotAPCE {aihuman} | R Documentation |
Plot APCE
Description
See Figure 4 for example.
Usage
PlotAPCE(
res,
y.max = 0.1,
decision.labels = c("signature bond", "small cash bond", "large cash bond"),
shape.values = c(16, 17, 15),
col.values = c("blue", "black", "red", "brown"),
label = TRUE,
r.labels = c("safe", "easily\npreventable", "prevent-\nable", "risky\n"),
label.position = c("top", "top", "top", "top"),
top.margin = 0.01,
bottom.margin = 0.01,
name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale"),
label.size = 4
)
Arguments
res |
A |
y.max |
Maximum value of y-axis. |
decision.labels |
Labels of decisions (D). |
shape.values |
Shape of point for each decisions. |
col.values |
Color of point for each principal stratum. |
label |
A logical argument whether to specify label of each principal stratum. The default is |
r.labels |
Label of each principal stratum. |
label.position |
The position of labels. |
top.margin |
Top margin of labels. |
bottom.margin |
Bottom margin of labels. |
name.group |
A character vector including the labels of five subgroups. |
label.size |
Size of label. |
Value
A ggplot.
Examples
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth = list(1:nrow(synth),which(synth$Sex==0),which(synth$Sex==1),
which(synth$Sex==1&synth$White==0),which(synth$Sex==1&synth$White==1))
sample_apce = CalAPCE(data = synth, mcmc.re = sample_mcmc,
subgroup = subgroup_synth)
sample_apce_summary = APCEsummary(sample_apce[["APCE.mcmc"]])
PlotAPCE(sample_apce_summary, y.max = 0.25, decision.labels = c("signature","small cash",
"middle cash","large cash"), shape.values = c(16, 17, 15, 18),
col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE)
[Package aihuman version 0.1.0 Index]