AiEvalmcmc {aihuman} | R Documentation |
Gibbs sampler for the main analysis
Description
See Appendix S5 for more details.
Usage
AiEvalmcmc(
data,
rho = 0,
Sigma0.beta.inv = NULL,
Sigma0.alpha.inv = NULL,
sigma0 = NULL,
beta = NULL,
alpha = NULL,
theta = NULL,
delta = NULL,
n.mcmc = 5 * 10,
verbose = FALSE,
out.length = 10,
beta.zx.off = FALSE,
theta.z.off = FALSE
)
Arguments
data |
A |
rho |
A sensitivity parameter. The default is |
Sigma0.beta.inv |
Inverse of the prior covariance matrix of beta. The default is a diagonal matrix with |
Sigma0.alpha.inv |
Inverse of the prior covariance matrix of alpha. The default is a diagonal matrix with |
sigma0 |
Prior variance of the cutoff points (theta and delta) |
beta |
Initial value for beta. |
alpha |
Initial value for alpha. |
theta |
Initial value for theta. |
delta |
Initial value for delta. |
n.mcmc |
The total number of MCMC iterations. The default is |
verbose |
A logical argument specified to print the progress on the screen. The default is |
out.length |
An integer to specify the progress on the screen. If |
beta.zx.off |
A logical argument specified to exclude the interaction terms (Z by X) from the model. The default is |
theta.z.off |
A logical argument specified to set same cutoffs theta for treatment and control group. The default is |
Value
An object of class mcmc
containing the posterior samples.
Examples
data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 2)