yates.missing {agridat} | R Documentation |
Factorial experiment of potato, 3x3 with missing values
Description
Factorial experiment of potato, 3x3 with missing values.
Format
A data frame with 80 observations on the following 3 variables.
trt
treatment factor, 8 levels
block
block, 10 levels
y
infection intensity
n
nitrogen treatment, 2 levels
p
phosphorous treatment, 2 levels
k
potassium treatment, 2 levels
Details
The response variable y
is the intensity of infection of potato
tubers innoculated with Phytophthora Erythroseptica.
There were 3 treatment factors:
2 nitrogen levels
2 phosphorous levels
2 potassium levels
Yates (1933) presents an iterative algorithm to estimate missing values in a matrix, using this data as an example.
Source
F. Yates (1933). The analysis of replicated experiments when the field results are incomplete. Emp. J. Exp. Agric., 1, 129–142.
References
Steel & Torrie (1980). Principles and Procedures of Statistics, 2nd Edition, page 212.
Examples
## Not run:
library(agridat)
data(yates.missing)
dat <- yates.missing
libs(lattice)
bwplot(y ~ trt, data=dat,
xlab="Treatment", ylab="Infection intensity",
main="yates.missing")
libs(reshape2)
mat0 <- acast(dat[, c('trt','block','y')], trt~block,
id.var=c('trt','block'), value.var='y')
# Use lm to estimate missing values. The estimated missing values
# are the same as in Yates (1933)
m1 <- lm(y~trt+block, dat)
dat$pred <- predict(m1, new=dat[, c('trt','block')])
dat$filled <- ifelse(is.na(dat$y), dat$pred, dat$y)
mat1 <- acast(dat[, c('trt','block','pred')], trt~block,
id.var=c('trt','block'), value.var='pred')
# Another method to estimate missing values via PCA
libs("nipals")
m2 <- nipals(mat0, center=FALSE, ncomp=3, fitted=TRUE)
# mat2 <- m2$scores
mat2 <- m2$fitted
# See also pcaMethods::svdImpute
# Compare
ord <- c("0","n","k","p","nk","np","kp","nkp")
print(mat0[ord,], na.print=".")
round(mat1[ord,] ,2)
round(mat2[ord,] ,2)
# mat2 SVD with 3 components recovers original data better than
# mat1 from lm()
sum((mat0-mat1)^2, na.rm=TRUE)
sum((mat0-mat2)^2, na.rm=TRUE) # Smaller SS => better fit
## End(Not run)