vold.longterm {agridat} | R Documentation |
Long-term barley yields at different fertilizer levels
Description
Long-term barley yields at different fertilizer levels
Usage
data("vold.longterm")
Format
A data frame with 76 observations on the following 3 variables.
year
year
nitro
nitrogen fertilizer, grams/m^2
yield
yield, grams/m^2
Details
Trials conducted at Osaker, Norway. Nitrogen fertilizer amounts were increased by twenty percent in 1978.
Vold (1998) fit a Michaelis-Menten type equation with a different maximum in each year and a decreasing covariate for non-fertilizer nitrogen.
Miguez used a non-linear mixed effects model with asymptotic curve.
Source
Arild Vold (1998). A generalization of ordinary yield response functions. Ecological modelling, 108, 227-236. https://doi.org/10.1016/S0304-3800(98)00031-3
References
Fernando E. Miguez (2008). Using Non-Linear Mixed Models for Agricultural Data.
Examples
## Not run:
library(agridat)
data(vold.longterm)
dat <- vold.longterm
libs(lattice)
foo1 <- xyplot(yield ~ nitro | factor(year), data = dat,
as.table=TRUE, type = "o",
main=list("vold.longterm", cex=1.5),
xlab = list("N fertilizer",cex=1.5,font=4),
ylab = list("Yield", cex=1.5))
# Long term trend shows decreasing yields
xyplot(yield ~ year , data = dat, group=nitro, type='o',
main="vold.longterm - yield level by nitrogen",
auto.key=list(columns=4))
if(0){
# Global model
m1.nls <- nls(yield ~ SSasymp(nitro, max, int, lograte), data=dat)
summary(m1.nls)
libs(MASS) # for 'confint'
confint(m1.nls)
# Raw data plus global model. Year variation not modeled.
pdat <- data.frame(nitro=seq(0,14,0.5))
pdat$pred <- predict(m1.nls, newdata=pdat)
libs(latticeExtra) # for layers
foo1 + xyplot(pred ~ nitro , data = pdat,
as.table=TRUE, type='l', col='red', lwd=2)
}
# Separate fit for each year. Overfitting with 3x19=57 params.
libs(nlme)
m2.lis <- nlsList(yield ~ SSasymp(nitro,max,int,lograte) | year, data=dat)
plot(intervals(m2.lis),layout = c(3,1),
main="vold.longterm") # lograte might be same for each year
# Fixed overall asymptotic model, plus random deviations for each year
# Simpler code, but less clear about what model is fit: m3.lme <- nlme(m2.lis)
libs(nlme)
m3.lme <- nlme(yield ~ SSasymp(nitro, max, int, lograte), data=dat,
groups = ~ year,
fixed = list(max~1, int~1, lograte~1),
random= max + int + lograte ~ 1,
start= c(max=300, int=100, rate=-2))
## # Fixed effects are similar for the nls/lme models
## coef(m1.nls)
## fixef(m3.lme)
## # Random effects are normally distributed
## qqnorm(m3.lme, ~ ranef(.),col="black")
## # Note the trend in intercept effects over time
## plot(ranef(m3.lme),layout=c(3,1))
## # Correlation between int,lograte int,max may not be needed
## intervals(m3.lme,which="var-cov")
## pairs(m3.lme,pch=19,col="black")
## # Model with int uncorrelated with max,lograte. AIC is worse.
## # fit4.lm3 <- update(m3.lme, random=pdBlocked(list(max+lograte~1,int ~ 1)))
## # intervals(fit4.lm3, which="var-cov")
## # anova(m3.lme, fit4.lm3)
# Plot the random-effect model. Excellent fit with few parameters.
pdat2 <- expand.grid(year=1970:1988, nitro=seq(0,15,length=50))
pdat2$pred <- predict(m3.lme, new=pdat2)
pdat2$predf <- predict(m3.lme, new=pdat2, level=0)
foo1 <- update(foo1, type='p',
key=simpleKey(c("Observed","Fixed","Random"),
col=c("blue","red","darkgreen"),
points=FALSE, columns=3))
libs(latticeExtra)
foo2 <- xyplot(pred~nitro|year, data=pdat2, type='l', col="darkgreen", lwd=2)
foo3 <- xyplot(predf~nitro|year, data=pdat2, type='l', col="red",lwd=1)
foo1 + foo2 + foo3
## # Income is maximized at about 15
## pdat2 <- transform(pdat2, income = predf*2 - 7*nitro)
## with(pdat2, xyplot(income~nitro))
## End(Not run)
[Package agridat version 1.23 Index]