silva.cotton {agridat} | R Documentation |
Number of cotton bolls for different levels of defoliation.
Description
Number of cotton bolls, nodes, plant height, and plant weight for different levels of defoliation.
Usage
data("silva.cotton")
Format
A data frame with 125 observations on the following 4 variables.
stage
growth stage
defoliation
level of defoliation, 0, 25, 50, 75, 100
plant
plant number
rep
replicate
reproductive
number of reproductive structures
bolls
number of bolls
height
plant height
nodes
number of nodes
weight
weight of bolls
Details
Data come from a greenhouse experiment with cotton plants. Completely randomized design with 5 replicates, 2 plants per pot.
Artificial defoliation was used at levels 0, 25, 50, 75, 100 percent.
Data was collected per plant at five growth stages: vegetative, flower-bud, blossom, fig and cotton boll.
The primary response variable is the number of bolls. The data are counts, underdispersed, correlated.
Zeviana et al. used this data to compared Poisson, Gamma-count, and quasi-Poisson GLMs.
Bonat & Zeviani used this data to fit multivariate correlated generalized linear model.
Used with permission of Walmes Zeviani.
Electronic version from: https://www.leg.ufpr.br/~walmes/data/desfolha_algodao.txt
Source
Silva, Anderson Miguel da; Degrande, Paulo Eduardo; Suekane, Renato; Fernandes, Marcos Gino; & Zeviani, Walmes Marques. (2012). Impacto de diferentes niveis de desfolha artificial nos estadios fenologicos do algodoeiro. Revista de Ciencias Agrarias, 35(1), 163-172. https://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S0871-018X2012000100016&lng=pt&tlng=pt.
References
Zeviani, W. M., Ribeiro, P. J., Bonat, W. H., Shimakura, S. E., Muniz, J. A. (2014). The Gamma-count distribution in the analysis of experimental underdispersed data. Journal of Applied Statistics, 41(12), 1-11. https://doi.org/10.1080/02664763.2014.922168 Online supplement: https://leg.ufpr.br/doku.php/publications:papercompanions:zeviani-jas2014
Regression Models for Count Data. https://cursos.leg.ufpr.br/rmcd/applications.html#cotton-bolls
Wagner Hugo Bonat & Walmes Marques Zeviani (2017). Multivariate Covariance Generalized Linear Models for the Analysis of Experimental Data. Short-cource at: 62nd RBras and 17th SEAGRO meeting/ https://github.com/leg-ufpr/mcglm4aed
Examples
## Not run:
library(agridat)
data(silva.cotton)
dat <- silva.cotton
dat$stage <- ordered(dat$stage,
levels=c("vegetative","flowerbud","blossom","boll","bollopen"))
# make stage a numeric factors
dat <- transform(dat,
stage = factor(stage, levels = unique(stage),
labels = 1:nlevels(stage)))
# sum data across plants, 1 pot = 2 plants
dat <- aggregate(cbind(weight,height,bolls,nodes) ~
stage+defoliation+rep, data=dat, FUN=sum)
# all traits, plant-level data
libs(latticeExtra)
foo <- xyplot(weight + height + bolls + nodes ~ defoliation | stage,
data = dat, outer=TRUE,
xlab="Defoliation percent", ylab="", main="silva.cotton",
as.table = TRUE, jitter.x = TRUE, type = c("p", "smooth"),
scales = list(y = "free"))
combineLimits(useOuterStrips(foo))
if(0){
# poisson glm with quadratic effect for defoliation
m0 <- glm(bolls ~ 1, data=dat, family=poisson)
m1 <- glm(bolls ~ defoliation+I(defoliation^2), data=dat, family=poisson)
m2 <- glm(bolls ~ stage:defoliation+I(defoliation^2), data=dat, family=poisson)
m3 <- glm(bolls ~ stage:(defoliation+I(defoliation^2)), data=dat, family=poisson)
par(mfrow=c(2,2)); plot(m3); layout(1)
anova(m0, m1, m2, m3, test="Chisq")
# predicted values
preddat <- expand.grid(stage=levels(dat$stage),
defoliation=seq(0,100,length=20))
preddat$pred <- predict(m3, newdata=preddat, type="response")
# Zeviani figure 3
libs(latticeExtra)
xyplot(bolls ~ jitter(defoliation)|stage, dat,
as.table=TRUE,
main="silva.cotton - observed and model predictions",
xlab="Defoliation percent",
ylab="Number of bolls") +
xyplot(pred ~ defoliation|stage, data=preddat,
as.table=TRUE,
type='smooth', col="black", lwd=2)
}
if(0){
# ----- mcglm -----
dat <- transform(dat, deffac=factor(defoliation))
libs(car)
vars <- c("weight","height","bolls","nodes")
splom(~dat[vars], data=dat,
groups = stage,
auto.key = list(title = "Growth stage",
cex.title = 1,
columns = 3),
par.settings = list(superpose.symbol = list(pch = 4)),
as.matrix = TRUE)
splom(~dat[vars], data=dat,
groups = defoliation,
auto.key = list(title = "Artificial defoliation",
cex.title = 1,
columns = 3),
as.matrix = TRUE)
# multivariate linear model.
m1 <- lm(cbind(weight, height, bolls, nodes) ~ stage * deffac,
data = dat)
anova(m1)
summary.aov(m1)
r0 <- residuals(m1)
# Checking the models assumptions on the residuals.
car::scatterplotMatrix(r0,
gap = 0, smooth = FALSE, reg.line = FALSE, ellipse = TRUE,
diagonal = "qqplot")
}
## End(Not run)