ortiz.tomato {agridat} | R Documentation |
Multi-environment trial of tomato in Latin America, weight/yield and environmental covariates
Description
Multi-environment trial of tomato in Latin America, weight/yield and environmental covariates
Usage
data("ortiz.tomato.covs")
data("ortiz.tomato.yield")
Format
The ortiz.tomato.covs
data frame has 18 observations on the following 18 variables.
env
environment
Day
degree days (base 10)
Dha
days to harvest
Driv
drivings (0/1)
ExK
extra potassium (kg / ha)
ExN
extra nitrogen (kg / ha)
ExP
extra phosphorous (kg / ha)
Irr
irrigation (0/1)
K
potassium (me/100 g)
Lat
latitude
Long
longitude
MeT
mean temperature (C)
MnT
min temperature (C)
MxT
max temperature (C)
OM
organic matter (percent)
P
phosphorous (ppm)
pH
soil pH
Prec
precipitation (mm)
Tri
trimming (0/1)
The ortiz.tomato.yield
data frame has 270 observations on the following 4 variables.
env
environment
gen
genotype
yield
marketable fruit yield t/ha
weight
fruit weight, g
Details
The environment locations are:
E04 | Estanzuela, Guatemala |
E05 | Baja Verapaz, Guatemala |
E06 | Cogutepeque, El Salvador |
E07 | San Andres, El Salvador |
E11 | Comayagua, Honduras |
E14 | Valle de Sabaco, Nicaragua |
E15 | San Antonio de Belen, Costa Rica |
E20 | San Cristobal, Dominican Republic |
E21 | Constanza, Dominican Republic |
E27 | Palmira, Colombia |
E40 | La Molina, Peru |
E41 | Santiago, Chile |
E42 | Chillan, Chile |
E43 | Curacavi, Chile |
E44 | Colina, Chile |
E50 | Belem, Brazil |
E51 | Caacupe, Paraguay |
E53 | Centeno, Trinidad Tobago |
Used with permission of Rodomiro Ortiz.
Source
Rodomiro Ortiz and Jose Crossa and Mateo Vargas and Juan Izquierdo, 2007. Studying the Effect of Environmental Variables On the Genotype x Environment Interaction of Tomato. Euphytica, 153, 119–134. https://doi.org/10.1007/s10681-006-9248-7
Examples
## Not run:
library(agridat)
data(ortiz.tomato.covs)
data(ortiz.tomato.yield)
libs(pls, reshape2)
# Double-centered yield matrix
Y <- acast(ortiz.tomato.yield, env ~ gen, value.var='yield')
Y <- sweep(Y, 1, rowMeans(Y, na.rm=TRUE))
Y <- sweep(Y, 2, colMeans(Y, na.rm=TRUE))
# Standardized covariates
X <- ortiz.tomato.covs
rownames(X) <- X$env
X <- X[,c("MxT", "MnT", "MeT", "Prec", "Day", "pH", "OM", "P", "K",
"ExN", "ExP", "ExK", "Trim", "Driv", "Irr", "Dha")]
X <- scale(X)
# Now, PLS relating the two matrices.
# Note: plsr deletes observations with missing values
m1 <- plsr(Y~X)
# Inner-product relationships similar to Ortiz figure 1.
biplot(m1, which="x", var.axes=TRUE, main="ortiz.tomato - env*cov biplot")
#biplot(m1, which="y", var.axes=TRUE)
## End(Not run)