harrison.priors {agridat} | R Documentation |

Ranges of analytes in soybean from other authors

A data frame with 80 observations on the following 5 variables.

`source`

Source document

`substance`

Analyte substance

`min`

minimum amount (numeric)

`max`

maximum analyte amount (numeric)

`number`

number of substances

Harrison et al. show how to construct an informative Bayesian prior from previously-published ranges of concentration for several analytes.

The units for daidzein, genistein, and glycitein are micrograms per gram.

The raffinose and stachyose units were converted to a common 'percent' scale.

The author names in the 'source' variable are shortened forms of the citations in the supplemental information of Harrison et al.

Jay M. Harrison, Matthew L. Breeze, Kristina H. Berman, George
G. Harrigan. 2013.
Bayesian statistical approaches to compositional analyses of transgenic
crops 2. Application and validation of informative prior distributions.
*Regulatory Toxicology and Pharmacology*, 65, 251-258.
https://doi.org/10.1016/j.yrtph.2012.12.002

Data retrieved from the Supplemental Information of this source.

Jay M. Harrison, Derek Culp, George G. Harrigan. 2013.
Bayesian MCMC analyses for regulatory assessments of safety in food composition
*Proceedings of the 24th Conference on Applied Statistics in
Agriculture (2012)*.

## Not run: library(agridat) data(harrison.priors) dat <- harrison.priors d1 <- subset(dat, substance=="daidzein") # Stack the data to 'tall' format and calculate empirical cdf d1t <- with(d1, data.frame(xx = c(min, max), yy=c(1/(number+1), number/(number+1)))) # Harrison 2012 Example 4: Common prior distribution # Harrison uses the minimum and maximum levels of daidzein from previous # studies as the first and last order statistics of a lognormal # distribution, and finds the best-fit lognormal distribution. m0 <- mean(log(d1t$xx)) # 6.37 s0 <- sd(log(d1t$xx)) # .833 mod <- nls(yy ~ plnorm(xx, meanlog, sdlog), data=d1t, start=list(meanlog=m0, sdlog=s0)) coef(mod) # Matches Harrison 2012 ## meanlog sdlog ## 6.4187829 0.6081558 plot(yy~xx, data=d1t, xlim=c(0,2000), ylim=c(0,1), main="harrison.priors - Common prior", xlab="daidzein level", ylab="CDF") mlog <- coef(mod)[1] # 6.4 slog <- coef(mod)[2] # .61 xvals <- seq(0, 2000, length=100) lines(xvals, plnorm(xvals, meanlog=mlog, sdlog=slog)) d1a <- d1 d1a$source <- as.character(d1a$source) d1a[19,'source'] <- "(All)" # Add a blank row for the densitystrip d1 libs(latticeExtra) # Plot the range for each source, a density curve (with arbitary # vertical scale) for the common prior distribution, and a density # strip by stacking the individual bands and using transparency segplot(factor(source) ~ min+max, d1a, main="harrison.priors",xlab="daidzein level",ylab="source") + xyplot(5000*dlnorm(xvals, mlog, slog)~xvals, type='l') + segplot(factor(rep(1,18)) ~ min+max, d1, 4, level=d1$number, col.regions="gray20", alpha=.1) ## End(Not run)

[Package *agridat* version 1.18 Index]