durban.splitplot {agridat} | R Documentation |
Split-plot experiment of barley with fungicide treatments
Description
Split-plot experiment of barley with fungicide treatments
Format
A data frame with 560 observations on the following 6 variables.
yield
yield, tonnes/ha
block
block, 4 levels
gen
genotype, 70 levels
fung
fungicide, 2 levels
row
row
bed
bed (column)
Details
Grown in 1995-1996 at the Scottish Crop Research Institute. Split-plot design with 4 blocks, 2 whole-plot fungicide treatments, and 70 barley varieties or variety mixes. Total area was 10 rows (north/south) by 56 beds (east/west).
Used with permission of Maria Durban.
Source
Durban, Maria and Hackett, Christine and McNicol, James and Newton, Adrian and Thomas, William and Currie, Iain. 2003. The practical use of semiparametric models in field trials, Journal of Agric Biological and Envir Stats, 8, 48-66. https://doi.org/10.1198/1085711031265.
Examples
## Not run:
library(agridat)
data(durban.splitplot)
dat <- durban.splitplot
libs(desplot)
desplot(dat, yield~bed*row,
out1=block, out2=fung, num=gen, # aspect unknown
main="durban.splitplot")
# Durban 2003, Figure 2
m20 <- lm(yield~gen + fung + gen:fung, data=dat)
dat$resid <- m20$resid
## libs(lattice)
## xyplot(resid~row, dat, type=c('p','smooth'), main="durban.splitplot")
## xyplot(resid~bed, dat, type=c('p','smooth'), main="durban.splitplot")
# Figure 4 doesn't quite match due to different break points
libs(lattice)
xyplot(resid ~ bed|factor(row), data=dat,
main="durban.splitplot",
type=c('p','smooth'))
# Figure 6 - field trend
# note, Durban used gam package like this
# m2lo <- gam(yield ~ gen*fung + lo(row, bed, span=.082), data=dat)
libs(mgcv)
m2lo <- gam(yield ~ gen*fung + s(row, bed,k=45), data=dat)
new2 <- expand.grid(row=unique(dat$row), bed=unique(dat$bed))
new2 <- cbind(new2, gen="G01", fung="F1")
p2lo <- predict(m2lo, newdata=new2)
libs(lattice)
wireframe(p2lo~row+bed, new2, aspect=c(1,.5),
main="durban.splitplot - Field trend")
if(require("asreml", quietly=TRUE)) {
libs(asreml,lucid)
# Table 5, variance components. Table 6, F tests
dat <- transform(dat, rowf=factor(row), bedf=factor(bed))
dat <- dat[order(dat$rowf, dat$bedf),]
m2a2 <- asreml(yield ~ gen*fung, random=~block/fung+units, data=dat,
resid =~ar1v(rowf):ar1(bedf))
m2a2 <- update(m2a2)
lucid::vc(m2a2)
## effect component std.error z.ratio bound
## block 0 NA NA B NA
## block:fung 0.01206 0.01512 0.8 P 0
## units 0.02463 0.002465 10 P 0
## rowf:bedf(R) 1 NA NA F 0
## rowf:bedf!rowf!cor 0.8836 0.03646 24 U 0
## rowf:bedf!rowf!var 0.1261 0.04434 2.8 P 0
## rowf:bedf!bedf!cor 0.9202 0.02846 32 U 0
wald(m2a2)
}
## End(Not run)