rel_is_irreflexive {agop} | R Documentation |
Irreflexive Binary Relations
Description
A binary relation R
is irreflexive
(or antireflexive), iff
for all x
we have \neg xRx
.
Usage
rel_is_irreflexive(R)
Arguments
R |
an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set. |
Details
rel_is_irreflexive
finds out if a given binary relation
is irreflexive. The function just checks whether all elements
on the diagonal of R
are zeros,
i.e., it has O(n)
time complexity,
where n
is the number of rows in R
.
Missing values on the diagonal may result in NA
.
When dealing with a graph's loops,
i.e., elements related to themselves, you may be interested
in finding a reflexive closure,
see rel_closure_reflexive
,
or a reflexive reduction,
see rel_reduction_reflexive
.
Value
rel_is_irreflexive
returns
a single logical value.
See Also
Other binary_relations:
check_comonotonicity()
,
pord_nd()
,
pord_spread()
,
pord_weakdom()
,
rel_graph()
,
rel_is_antisymmetric()
,
rel_is_asymmetric()
,
rel_is_cyclic()
,
rel_is_reflexive()
,
rel_is_symmetric()
,
rel_is_total()
,
rel_is_transitive()
,
rel_reduction_hasse()