index_maxprod {agop} | R Documentation |
Kosmulski's MAXPROD-index
Description
Given a sequence of n
non-negative numbers x=(x_1,\dots,x_n)
,
where x_i \ge x_j \ge 0
for i \le j
,
the MAXPROD-index (Kosmulski, 2007) for x
is defined as
MAXPROD(x)=\max\{i x_i: i=1,\dots,n\}
Usage
index_maxprod(x)
Arguments
x |
a non-negative numeric vector |
Details
If a non-increasingly sorted vector is given, the function has O(n) run-time.
The MAXPROD index is the same as the discrete Shilkret integral of x
w.r.t. the counting measure.
See index_lp
for a natural generalization.
Value
a single numeric value
References
Kosmulski M., MAXPROD - A new index for assessment of the scientific output of an individual, and a comparison with the h-index, Cybermetrics 11(1), 2007.
Mesiar R., Gagolewski M., H-index and other Sugeno integrals: Some defects and their compensation, IEEE Transactions on Fuzzy Systems 24(6), 2016, pp. 1668-1672. doi:10.1109/TFUZZ.2016.2516579
Gagolewski M., Mesiar R., Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem, Information Sciences 263, 2014, pp. 166-174. doi:10.1016/j.ins.2013.12.004
Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7
See Also
Other impact_functions:
index_g()
,
index_h()
,
index_lp()
,
index_rp()
,
index_w()
,
pord_weakdom()