check_comonotonicity {agop} | R Documentation |
Check If Two Vectors Are Comonotonic
Description
This functions determines if two vectors have a common ordering permutation.
Usage
check_comonotonicity(x, y, incompatible_lengths = NA)
Arguments
x |
numeric vector |
y |
numeric vector |
incompatible_lengths |
single logical value,
value to return iff lengths of |
Details
Two vectors x
, y
of equal length n
are comonotonic,
if and only if there exists a permutation \sigma
such that
x_{\sigma(1)}\le \dots \le x_{\sigma(n)}
and
y_{\sigma(1)}\le \dots \le y_{\sigma(n)}
.
Thus, \sigma
orders x
and y
simultaneously.
Equivalently, x
and y
are comonotonic,
iff (x_i-x_j)(y_i-y_j)\ge 0
for every i,j
.
If there are missing values in x
or y
, the function
returns NA
.
Currently, the implemented algorithm has O(n^2)
time complexity.
Value
Returns a single logical value.
References
Grabisch M., Marichal J.-L., Mesiar R., Pap E., Aggregation functions, Cambridge University Press, 2009.
Gagolewski M., Data Fusion: Theory, Methods, and Applications, Institute of Computer Science, Polish Academy of Sciences, 2015, 290 pp. isbn:978-83-63159-20-7
See Also
Other binary_relations:
pord_nd()
,
pord_spread()
,
pord_weakdom()
,
rel_graph()
,
rel_is_antisymmetric()
,
rel_is_asymmetric()
,
rel_is_cyclic()
,
rel_is_irreflexive()
,
rel_is_reflexive()
,
rel_is_symmetric()
,
rel_is_total()
,
rel_is_transitive()
,
rel_reduction_hasse()