adw_vector {adw} | R Documentation |
Angular Distance Weighting Interpolation for the extent of vector.
Description
The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius.
Usage
adw_vector(ds, extent, gridsize = 5, cdd = 1000, m = 4, nmin = 3, nmax = 10)
Arguments
ds |
a input dataframe which contains the column names of lon, lat, value. |
extent |
a extent numeric vector (latitude and longitude) of length 4 in the order c(xmin, xmax, ymin, ymax). |
gridsize |
the grid size, i.e. the grid resolution. units: degree. |
cdd |
correlation decay distance, i.e. the maximum search radius. unit: kilometer. default value: 1000km. |
m |
is used to adjust the weighting function further, higher values of m increase the rate at which the weight decays with distance. default value 4. |
nmin |
the minimum number of observation points required to interpolate a grid within the search radius (i.e. cdd); if the number of stations within the search ridius (cdd) is less than nmin, a missing value will be generated to fill this grid. default value 3. |
nmax |
The number of nearest points within the search radius to use for interpolation. default value 10. |
Value
a regular latitude-longitude dataframe grid (interpoled values).
References
Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JD006280.
Examples
set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
lat = runif(100, min = 31, max = 37),
value = runif(100, min = -10, max = 10))
head(dd)
# example
grd <- adw_vector(dd, extent = c(110, 117, 31, 37), gridsize = 0.5, cdd = 500)
head(grd)