| plot.fads {ads} | R Documentation | 
Plot second-order neighbourhood functions
Description
Plot second-order neighbourhood function estimates returned by functions kfun, k12fun, kmfun, 
 kijfun or ki.fun.
Usage
## S3 method for class 'fads'
plot(x, opt, cols, lty, main, sub, legend, csize, ...)
Arguments
| x | an object of class  | 
| opt | one of  | 
| cols | (optional) colours used for plotting functions. | 
| lty | (optional) line types used for plotting functions. | 
| main | by default, the value of argument x, otherwise a text to be displayed as a title of the plot.  | 
| sub | by default, the name of the function displayed, otherwise a text to be displayed as function subtitle.  | 
| legend | If  | 
| csize | scaling factor for font size so that actual font size is  | 
| ... | extra arguments that will be passed to the plotting functions  | 
Details
Function plot.fads displays second-order neighbourhood function estimates as a function of interpoint distance, with expected values 
as well as confidence interval limits when computed. Argument x can be any fads object returned by functions kfun,
  k12fun, kmfun, kijfun or ki.fun. 
Value
none.
Author(s)
See Also
kfun,
k12fun,
kmfun,
kijfun,
ki.fun.
Examples
  data(BPoirier)
  BP <- BPoirier
  ## Not run: Ripley's function
  swr <- spp(BP$trees, win=BP$rect)
  k.swr <- kfun(swr, 25, 1, 500)
  plot(k.swr)
  
  ## Not run: Intertype function
  swrm <- spp(BP$trees, win=BP$rect, marks=BP$species)
  k12.swrm <- k12fun(swrm, 25, 1, 500, marks=c("beech","oak"))
  plot(k12.swrm, opt="L", cols=1)
  
  ## Not run: Mark correlation function
  swrm <- spp(BP$trees, win=BP$rect, marks=BP$dbh)
  km.swrm <- kmfun(swrm, 25, 1, 500)
  plot(km.swrm, main="Example 1", sub=NULL, legend=FALSE)