| derive_param_clinbenefit {admiralonco} | R Documentation |
Adds a Parameter for Clinical Benefit
Description
The
derive_param_clinbenefit() function
has been superseded in favor of derive_extreme_event().
Adds a parameter for clinical benefit/disease control
Usage
derive_param_clinbenefit(
dataset,
dataset_adsl,
filter_source,
source_resp,
source_pd = NULL,
source_datasets,
reference_date,
ref_start_window,
aval_fun,
clinben_vals = c("CR", "PR", "SD", "NON-CR/NON-PD"),
set_values_to,
subject_keys = get_admiral_option("subject_keys")
)
Arguments
dataset |
Input dataset. This is the dataset to which the clinical benefit rate parameter will be added. The variables After applying |
dataset_adsl |
ADSL input dataset. The variables specified for |
filter_source |
Filter condition in |
source_resp |
A |
source_pd |
A |
source_datasets |
A named list of data sets is expected. The list must contain the names provided by the |
reference_date |
Name of variable representing the index date for
|
ref_start_window |
Integer representing number of days from |
aval_fun |
Deprecated, please use Function to map character analysis value ( The (first) argument of the function must expect a character vector and the function must return a numeric vector. |
clinben_vals |
A vector of response values to be considered when determining clinical benefit. |
set_values_to |
A named list returned by |
subject_keys |
A named list returned by |
Details
Clinical benefit/disease control is first identified by looking for subjects
having response status, and then derived for subjects that have at least one
evaluable non-PD response assessment prior to first PD (Progressive Disease)
(i.e., responses inclusive of CR, PR, SD, and NON-CR/NON-PD) and after a specified
amount of time from a reference date (ref_start_window).
Note: The user input values they wish to include when determining
clinical benefit using the argument clinben_vals. The default values for this are
CR, PR, SD, and NON-CR/NON-PD, as listed above. In the below example,
eligible values be limited to CR and PR.
Example: clinben_vals <- c("CR", "PR")
The input dataset (
dataset) is restricted to the observations matchingfilter_sourceand to observations before or at the date specified bysource_pd.This dataset is further restricted to include user-generated response assessments from
clinben_valsor include response assessments ofCR,PR,SD, andNON-CR/NON-PD, exclude missing response assessments, and exclude those less thanref_start_windowafterreference_date. The earliest assessment byADTis then selected.The dataset identified by
datasetinsource_respis restricted according to itsfilterargument. The variable corresponding to thedateparameter ofsource_respis considered together withADTfrom the previous step.For the observations being added to
dataset,ADTis set to the earlier of the first assessment date representing an evaluable non-PD assessment prior to first PD, or the date representing the start of response.For the observations being added to
dataset,AVALCis set to-
Yfor those subjects in thedatasetmeeting the criteria for clinical benefit above -
Nfor subjects not meeting the clinical benefit criteria indatasetor the dataset identified insource_resp -
Nfor subjects present indataset_adslbut not present indatasetor the dataset identified insource_resp.
-
-
AVALis derived usingAVALCas input to the function specified inaval_fun. The variables specified by
set_values_toare added to the new observations with values equal to the values specified in the same.The new observations are added to
dataset. Variables held in common betweendatasetanddataset_adslare kept for the new observations, and are populated with their values fromdataset_adsl.
Value
The input dataset with a new parameter for clinical benefit
Author(s)
Andrew Smith
See Also
Other superseded:
derive_param_bor(),
derive_param_confirmed_bor(),
derive_param_confirmed_resp(),
derive_param_response(),
filter_pd()
Examples
library(lubridate)
library(dplyr)
library(admiral)
adsl <- tibble::tribble(
~USUBJID, ~TRTSDT,
"01", ymd("2020-01-14"),
"02", ymd("2021-02-16"),
"03", ymd("2021-03-09"),
"04", ymd("2021-04-21")
) %>%
mutate(STUDYID = "AB42")
adrs <- tibble::tribble(
~USUBJID, ~PARAMCD, ~AVALC, ~ADT,
"01", "RSP", "Y", ymd("2021-03-14"),
"02", "RSP", "N", ymd("2021-05-07"),
"03", "RSP", "N", NA,
"04", "RSP", "N", NA,
"01", "PD", "N", NA,
"02", "PD", "Y", ymd("2021-05-07"),
"03", "PD", "N", NA,
"04", "PD", "N", NA,
"01", "OVR", "SD", ymd("2020-03-14"),
"01", "OVR", "PR", ymd("2021-04-13"),
"02", "OVR", "PR", ymd("2021-04-08"),
"02", "OVR", "PD", ymd("2021-05-07"),
"02", "OVR", "CR", ymd("2021-06-20"),
"03", "OVR", "SD", ymd("2021-03-30"),
"04", "OVR", "NE", ymd("2021-05-21"),
"04", "OVR", "NA", ymd("2021-06-30"),
"04", "OVR", "NE", ymd("2021-07-24"),
"04", "OVR", "ND", ymd("2021-09-04"),
) %>%
mutate(STUDYID = "AB42", ANL01FL = "Y") %>%
derive_vars_merged(
dataset_add = adsl,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(TRTSDT)
)
pd <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "PD" & AVALC == "Y" & ANL01FL == "Y"
)
resp <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "RSP" & AVALC == "Y" & ANL01FL == "Y"
)
derive_param_clinbenefit(
dataset = adrs,
dataset_adsl = adsl,
filter_source = PARAMCD == "OVR" & ANL01FL == "Y",
source_resp = resp,
source_pd = pd,
source_datasets = list(adrs = adrs),
reference_date = TRTSDT,
ref_start_window = 28,
set_values_to = exprs(
PARAMCD = "CBR"
)
) %>%
filter(PARAMCD == "CBR")