| plotSim {adjclust} | R Documentation | 
Plot (dis)similarity matrix
Description
Heatmap of the (dis)similarity matrix
Usage
plotSim(
  mat,
  type = c("similarity", "dissimilarity"),
  clustering = NULL,
  dendro = NULL,
  k = NULL,
  log = TRUE,
  legendName = "intensity",
  main = NULL,
  priorCount = 0.5,
  stats = c("R.squared", "D.prime"),
  h = NULL,
  axis = FALSE,
  naxis = min(10, nrow(mat)),
  axistext = NULL,
  xlab = "objects",
  cluster_col = "darkred",
  mode = c("standard", "corrected", "total-disp", "within-disp", "average-disp")
)
Arguments
mat | 
 matrix to plot. It can be of class   | 
type | 
 input matrix type. Can be either   | 
clustering | 
 vector of clusters to display on the matrix (if not 
  | 
dendro | 
 dendrogram provided as an   | 
k | 
 number of clusters to display. Used only when   | 
log | 
 logical. Should the breaks be based on log-scaled values of the
matrix entries. Default to   | 
legendName | 
 character. Title of the legend. Default to 
  | 
main | 
 character. Title of the plot. Default to   | 
priorCount | 
 numeric. Average count to be added to each entry of the
matrix to avoid taking log of zero. Used only if   | 
stats | 
 input SNP correlation type. Used when   | 
h | 
 positive integer. Threshold distance for SNP correlation 
computation. Used when   | 
axis | 
 logical. Should x-axis be displayed on the plot? Default to 
  | 
naxis | 
 integer. If   | 
axistext | 
 character vector. If   | 
xlab | 
 character. If   | 
cluster_col | 
 colour for the cluster line if   | 
mode | 
 type of dendrogram to plot (see   | 
Details
This function produces a heatmap for the used (dis)similarity matrix that can be used as a diagnostic plot to check the consistency between the obtained clustering and the original (dis)similarity
See Also
Examples
## Not run: 
clustering <- rep(1:3, each = 50)
dist_data <- as.matrix(dist(iris[, 1:4]))
dendro_iris <- adjClust(dist_data, type = "dissimilarity")
plotSim(dist_data, type = "dissimilarity", dendro = dendro_iris, axis = TRUE)
plotSim(dist_data, type = "dissimilarity", dendro = dendro_iris,
        clustering = clustering)
plotSim(dist_data, type = "dissimilarity", dendro = dendro_iris, axis = TRUE,
        k = 3)
plotSim(dist_data, type = "dissimilarity", legendName = "IF", axis = TRUE, 
        clustering = clustering)
p <- plotSim(dist(iris[, 1:4]), type = "dissimilarity", log = FALSE, 
             clustering = clustering, cluster_col = "blue")
# custom palette
p + scale_fill_gradient(low = "yellow", high = "red")
# dsCMatrix
m <- Matrix(c(0, 0, 2, 0, 3, 0, 2, 0, 0), ncol = 3)
res <- adjClust(m)
plotSim(m, axis = TRUE)
plotSim(m, dendro = res)
# dgCMatrix
m <- as(m, "generalMatrix")
plotSim(m)
m <- as.dist(m)
if (require("HiTC", quietly = TRUE)) {
  load(system.file("extdata", "hic_imr90_40_XX.rda", package = "adjclust"))
  res <- hicClust(hic_imr90_40_XX, log = TRUE)
  plotSim(hic_imr90_40_XX, axis = TRUE)
}
if (requireNamespace("snpStats", quietly = TRUE)) {
  data(testdata, package = "snpStats")
  plotSim(Autosomes[1:200, 1:5], h = 3, stats = "R.squared", axis = TRUE,
          axistext = c("A", "B", "C", "D", "E"))
}
## End(Not run)