simulate_surv_data {adjSURVCI} | R Documentation |
Simulate stratified and clustered survival data
Description
The function simulate_surv_data
simulates survival data based
on a marginal proportional hazards model based on Logan et al. (2011).
Usage
simulate_surv_data(
N = 100,
alpha = 1,
beta1 = 1 * 1/alpha,
beta2 = -1 * 1/alpha,
beta3 = 0.5 * 1/alpha,
rateC = 0.01,
stratified = TRUE,
lambda0 = 1,
lambda1 = 2
)
Arguments
N |
Total number of clusters. Default is 100. |
alpha |
Parameter for a positive stable distribution. It controls correlation within a cluster.
|
beta1 |
This value multiplied by alpha is the true value of normally distributed covariate effect. |
beta2 |
This value multiplied by alpha is the true value of uniformly distributed covariate effect. |
beta3 |
This value multiplied the alpha is the true value of bernoulli distributed covariate effect. |
rateC |
Rate of exponential distribution to generate censoring times. Default is 0.01. |
stratified |
It is |
lambda0 |
Constant baseline hazard for first stratum. If |
lambda1 |
Constant baseline hazard for second stratum. |
Value
Returns a data frame with the following variables:
cluster |
Cluster variable |
times |
Survival times |
delta |
Event indicator with Event=1 and Censoring=0 |
Z1 |
Standard normal covariate |
Z2 |
Cluster level covariate generated from uniform distribution |
Z3 |
Bernoulli distributed covariate with probability 0.6 |
s |
Stratification variable. This is provided only when |
References
Logan BR, Zhang MJ, Klein JP. Marginal models for clustered time-to-event data with competing risks using pseudovalues. Biometrics. 2011;67(1):1-7. doi:10.1111/j.1541-0420.2010.01416.x
Examples
#Stratified data
alpha = 0.5
d = simulate_surv_data(N=200,alpha=alpha,beta1=0.5*1/alpha,beta2=-0.5*1/alpha,
beta3=1/alpha,rateC=1.3,lambda0=1,lambda1=2,stratified = TRUE)
#Unstratified data
d = simulate_surv_data(N=200,alpha=alpha,beta1=0.5*1/alpha,beta2=-0.5*1/alpha,
beta3=1/alpha,rateC=0.9,lambda0=1,lambda1=2,stratified = FALSE)