simm.mou {adehabitatLT} | R Documentation |
Simulation of a Bivariate Ornstein-Uhlenbeck Process
Description
This function simulates a bivariate Ornstein-Uhlenbeck process for animal movement.
Usage
simm.mou(date = 1:100, b = c(0, 0),
a = diag(0.5, 2), x0 = b,
sigma = diag(2), id = "A1",
burst = id, proj4string=CRS())
Arguments
date |
a vector indicating the date (in seconds) at which
relocations should be simulated. This vector can be of class
|
b |
a vector of length 2 containing the coordinates of the attraction point |
a |
a 2*2 matrix |
x0 |
a vector of length 2 containing the coordinates of the startpoint of the trajectory |
sigma |
a 2*2 positive definite matrix |
id |
a character string indicating the identity of the simulated
animal (see |
burst |
a character string indicating the identity of the simulated
burst (see |
proj4string |
a valid CRS object containing the projection
information (see |
Details
The Ornstein-Uhlenbeck process can be used to take into account an "attraction point" into the animal movements (Dunn and Gipson 1977). This process can be simulated using the stochastic differential equation:
d\mathbf{z} = \mathbf{a} ( \mathbf{b} - \mathbf{z}(t)) dt
+ \mathbf{\Sigma} d \mathbf{B2(t)}
The vector b
contains the coordinates of the attraction
point. The matrix a
(2 rows and 2 columns) contains
coefficients controlling the force of the attraction. The matrix
Sigma
controls the noise added to the movement (see
?simm.mba
for details on this matrix).
Value
An object of class ltraj
Author(s)
Clement Calenge clement.calenge@ofb.gouv.fr
Stephane Dray dray@biomserv.univ-lyon1.fr
Manuela Royer royer@biomserv.univ-lyon1.fr
Daniel Chessel chessel@biomserv.univ-lyon1.fr
References
Dunn, J.E., & Gipson, P.S. (1977) Analysis of radio telemetry data in studies of home range. Biometrics 33: 85–101.
See Also
simm.brown
, ltraj
,
simm.crw
, simm.mba
Examples
suppressWarnings(RNGversion("3.5.0"))
set.seed(253)
u <- simm.mou(1:50, burst="Start at the attraction point")
v <- simm.mou(1:50, x0=c(-3,3),
burst="Start elsewhere")
w <- simm.mou(1:50, a=diag(c(0.5,0.1)), x0=c(-3,3),
burst="Variable attraction")
x <- simm.mou(1:50, a=diag(c(0.1,0.5)), x0=c(-3,7),
burst="Both")
z <- c(u,v,w,x)
plot(z, addpoints = FALSE, perani = FALSE)