snapclust.choose.k {adegenet} | R Documentation |
Choose the number of clusters for snapclust using AIC, BIC or AICc
Description
This function implements methods for investigating the optimal number of
genetic clusters ('k') using the fast maximum-likelihood genetic clustering
approach described in Beugin et al (2018). The method runs
snapclust
for varying values of 'k', and computes the requested
summary statistics for each clustering solution to assess goodness of
fit. The method is fully documented in a dedicated tutorial which can be
accessed using adegenetTutorial("snapclust")
.
Usage
snapclust.choose.k(max, ..., IC = AIC, IC.only = TRUE)
Arguments
max |
An integer indicating the maximum number of clusters to seek;
|
... |
Arguments passed to |
IC |
A function computing the information criterion for
|
IC.only |
A logical (TRUE by default) indicating if IC values only
should be returned; if |
Details
The method is described in Beugin et al (2018) A fast likelihood
solution to the genetic clustering problem. Methods in Ecology and
Evolution doi:10.1111/2041-210X.12968. A dedicated
tutorial is available by typing adegenetTutorial("snapclust")
.
Author(s)
Thibaut Jombart thibautjombart@gmail.com
See Also
snapclust
to generate individual clustering solutions,
and BIC.snapclust
for computing BIC for snapclust
objects.