genpop class {adegenet} | R Documentation |
adegenet formal class (S4) for allele counts in populations
Description
An object of class genpop
contain alleles counts
for several loci.
It contains several components (see 'slots' section).
Such object is obtained using genind2genpop
which converts
individuals genotypes of known population into a genpop
object.
Note that the function summary
of a genpop
object
returns a list of components.
Note that as in other S4 classes, slots are accessed using @ instead
of $.
Slots
tab
:matrix of alleles counts for each combinaison of population (in rows) and alleles (in columns).
loc.fac
:locus factor for the columns of
tab
loc.n.all
:integer vector giving the number of alleles per locus
all.names
:list having one component per locus, each containing a character vector of alleles names
call
:the matched call
ploidy
:an integer indicating the degree of ploidy of the genotypes. Beware: 2 is not an integer, but as.integer(2) is.
type
:a character string indicating the type of marker: 'codom' stands for 'codominant' (e.g. microstallites, allozymes); 'PA' stands for 'presence/absence' (e.g. AFLP).
other
:(optional) a list containing other information
Extends
Class "gen"
, directly.
Class "popInfo"
, directly.
Methods
- names
signature(x = "genpop")
: give the names of the components of a genpop objectsignature(x = "genpop")
: prints a genpop object- show
signature(object = "genpop")
: shows a genpop object (same as print)- summary
signature(object = "genpop")
: summarizes a genpop object, invisibly returning its content or suppress printing of auxiliary information by specifyingverbose = FALSE
Author(s)
Thibaut Jombart t.jombart@imperial.ac.uk
See Also
as.genpop
, is.genpop
,makefreq
, genind
, import2genind
, read.genetix
, read.genepop
, read.fstat
Examples
obj1 <- import2genind(system.file("files/nancycats.gen",
package="adegenet"))
obj1
obj2 <- genind2genpop(obj1)
obj2
## Not run:
data(microsatt)
# use as.genpop to convert convenient count tab to genpop
obj3 <- as.genpop(microsatt$tab)
obj3
all(obj3@tab==microsatt$tab)
# perform a correspondance analysis
obj4 <- genind2genpop(obj1,missing="chi2")
ca1 <- dudi.coa(as.data.frame(obj4@tab),scannf=FALSE)
s.label(ca1$li,sub="Correspondance Analysis",csub=2)
add.scatter.eig(ca1$eig,2,xax=1,yax=2,posi="top")
## End(Not run)