adass.fr_eaass {adass} | R Documentation |
Evolutionary algorithm for the adaptive smoothing spline estimator (EAASS).
Description
EAASS algorithm to choose the tuning parameters for the AdaSS estimator (Centofanti et al., 2020).
Usage
adass.fr_eaass(
Y_fd,
X_fd,
basis_s,
basis_t,
beta_ders = NULL,
beta_dert = NULL,
grid_eval_ders = NULL,
grid_eval_dert = NULL,
rand_search_par = list(c(-4, 4), c(-4, 4), c(0, 1, 5, 10, 15), c(0, 1, 2, 3, 4), c(0,
1, 5, 10, 15), c(0, 1, 2, 3, 4)),
popul_size = 12,
iter_num = 10,
r = 0.2,
pert_vec = c(0.8, 1.2),
X_fd_test = NULL,
Y_fd_test = NULL,
progress = TRUE,
ncores = 1,
K = 10
)
Arguments
Y_fd |
An object of class fd corresponding to the response functions. |
X_fd |
An object of class fd corresponding to the covariate functions. |
basis_s |
B-splines basis along the |
basis_t |
B-splines basis along the |
beta_ders |
Initial estimate of the partial derivative of the coefficient function along the |
beta_dert |
Initial estimate of the partial derivative of the coefficient function along the |
grid_eval_ders |
Grid of evaluation of the partial derivatives along the |
grid_eval_dert |
Grid of evaluation of the partial derivatives along the |
rand_search_par |
List containing the initial population ranges for the tuning parameters. |
popul_size |
Initial population size. |
iter_num |
Algorithm iterations. |
r |
Truncation parameter in the exploitation phase. |
pert_vec |
Perturbation parameters in the exploration phase. |
X_fd_test |
Test set covariate functions. Default is NULL.
If |
Y_fd_test |
Test set response functions. Default is NULL.
If |
progress |
If TRUE a progress bar is printed. Default is TRUE. |
ncores |
If |
K |
Number of folds. Default is 10. |
Value
A list containing the following arguments:
-
tun_par_opt
: Vector of optimal tuning parameters. -
CV
: Estimated prediction errors. -
CV_sd
: Standard errors of the estimated prediction errors. -
comb_list
: The combinations of tuning parameters explored. -
Y_fd
: The response functions. -
X_fd
: The covariate functions.
References
Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., Vantini, S. (2023). Adaptive Smoothing Spline Estimator for the Function-on-Function Linear Regression Model. Computational Statistics 38(1), 191–216.
See Also
Examples
library(adass)
data<-simulate_data("Scenario HAT",n_obs=100)
X_fd=data$X_fd
Y_fd=data$Y_fd
basis_s <- fda::create.bspline.basis(c(0,1),nbasis = 5,norder = 4)
basis_t <- fda::create.bspline.basis(c(0,1),nbasis = 5,norder = 4)
mod_smooth <-adass.fr(Y_fd,X_fd,basis_s = basis_s,basis_t = basis_t,tun_par=c(10^-6,10^-6,0,0,0,0))
grid_s<-seq(0,1,length.out = 5)
grid_t<-seq(0,1,length.out = 5)
beta_der_eval_s<-fda::eval.bifd(grid_s,grid_t,mod_smooth$Beta_hat_fd,sLfdobj = 2)
beta_der_eval_t<-fda::eval.bifd(grid_s,grid_t,mod_smooth$Beta_hat_fd,tLfdobj = 2)
mod_adsm<-adass.fr_eaass(Y_fd,X_fd,basis_s,basis_t,
beta_ders=beta_der_eval_s, beta_dert=beta_der_eval_t,
rand_search_par=list(c(-8,4),c(-8,4),c(0,0.1),c(0,4),c(0,0.1),c(0,4)),
grid_eval_ders=grid_s, grid_eval_dert=grid_t,
popul_size = 1,ncores=1,iter_num=1)