adass.fr {adass} | R Documentation |
Adaptive smoothing spline estimator for the function-on-function linear regression model
Description
The adaptive smoothing spline (AdaSS) estimator for the function-on-function linear regression proposed in Centofanti et al., 2020.
Usage
adass.fr(
Y_fd,
X_fd,
basis_s,
basis_t,
beta_ders = NULL,
beta_dert = NULL,
grid_eval_ders = NULL,
grid_eval_dert = NULL,
tun_par = c(lambda_s = 10^4, lambda_t = 10^4, delta_s = 0, gamma_s = 1, delta_t = 0,
delta_t = 1),
CV = FALSE,
K = 10,
X_fd_test = NULL,
Y_fd_test = NULL
)
Arguments
Y_fd |
An object of class fd corresponding to the response functions. |
X_fd |
An object of class fd corresponding to the covariate functions. |
basis_s |
B-splines basis along the |
basis_t |
B-splines basis along the |
beta_ders |
Initial estimate of the partial derivative of the coefficient function along the |
beta_dert |
Initial estimate of the partial derivative of the coefficient function along the |
grid_eval_ders |
Grid of evaluation of the partial derivatives along the |
grid_eval_dert |
Grid of evaluation of the partial derivatives along the |
tun_par |
Vector of tuning parameters. |
CV |
If TRUE the |
K |
Number of folds. Default is 10. |
X_fd_test |
Test set covariate functions. Default is NULL. |
Y_fd_test |
Test set response functions. Default is NULL. |
Value
A list containing the following arguments:
-
B
: The basis coefficients matrix estimate of the coefficient function. -
Beta_hat_fd
: The coefficient function estimate of class bifd. -
alpha
: The intercept function estimate. -
tun_par
: Vector of tuning parameters. -
CV
: Estimated prediction error. -
CV_sd
: Standard error of the estimated prediction error. -
Y_fd
: The response functions. -
X_fd
: The covariate functions.
References
Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., Vantini, S. (2023). Adaptive Smoothing Spline Estimator for the Function-on-Function Linear Regression Model. Computational Statistics 38(1), 191–216.
See Also
Examples
library(adass)
data<-simulate_data("Scenario HAT",n_obs=100)
X_fd=data$X_fd
Y_fd=data$Y_fd
basis_s <- fda::create.bspline.basis(c(0,1),nbasis = 10,norder = 4)
basis_t <- fda::create.bspline.basis(c(0,1),nbasis = 10,norder = 4)
mod_smooth <-adass.fr(Y_fd,X_fd,basis_s = basis_s,basis_t = basis_t,tun_par=c(10^-6,10^-6,0,0,0,0))
grid_s<-seq(0,1,length.out = 10)
grid_t<-seq(0,1,length.out = 10)
beta_der_eval_s<-fda::eval.bifd(grid_s,grid_t,mod_smooth$Beta_hat_fd,sLfdobj = 2)
beta_der_eval_t<-fda::eval.bifd(grid_s,grid_t,mod_smooth$Beta_hat_fd,tLfdobj = 2)
mod_adass <-adass.fr(Y_fd, X_fd, basis_s = basis_s, basis_t = basis_t,
tun_par=c(10^-6,10^-6,0,1,0,1),beta_ders = beta_der_eval_s,
beta_dert = beta_der_eval_t,grid_eval_ders=grid_s,grid_eval_dert=grid_t )