prms {adaptIVPT} | R Documentation |
Compute the passing rate for the mixed scaling approach in bioequivalence (BE) studies
Description
This function runs Monte Carlo simulations to compute the passing rate (PR) of the mixed scaling (MS) approach.
Usage
prms(n, r, params = list(), nsim = 1000, ncores = NULL)
Arguments
n |
The number of donors in each simulation. |
r |
The number of replicates from each donor for each simulated dataset. |
params |
(Optional) The list of true parameters to be assumed in data generation.
|
nsim |
(Optional) The number of total simulations to be conducted. Defaults to 1,000. |
ncores |
(Optional) The number of CPU cores to use for parallel processing (OpenMP). If R hasn't been installed with OpenMP configured, this will not take effect. When OpenMP is available, it should not exceed the number of existing cores. If unspecified, it will default to 2 cores or the number of existing cores, whichever is smaller. |
Value
A list of lists
-
parameters
- A list of true parameter settings. -
passing_rate
- The estimated passing rate. -
runtime
- The total elapsed time charged for the execution of the program.
Author(s)
Daeyoung Lim, daeyoung.lim@uconn.edu
References
Davit, B. M., Chen, M. L., Conner, D. P., Haidar, S. H., Kim, S., Lee, C. H., Lionberger, R. A., Makhlouf, F. T., Nwakama, P. E., Patel, D. T., Schuirmann, D. J., & Yu, L. X. (2012). Implementation of a reference-scaled average bioequivalence approach for highly variable generic drug products by the US Food and Drug Administration. The AAPS journal, 14(4), 915-924.
Examples
out <- prms(10, 6, nsim = 2)