| assignment {adagio} | R Documentation |
Linear Sum Assignment Problem
Description
Linear (sum) assignment problem, or LSAP.
Usage
assignment(cmat, dir = "min")
Arguments
cmat |
quadratic (numeric) matrix, the cost matrix. |
dir |
direction, can be "min" or "max". |
Details
Solves the linear (sum) assignment problem for quadratic matrices.
Uses the lp.assign function from the lpSolve package,
that is it solves LSAP as a mixed integer linear programming problem.
Value
List with components perm, the permutation that defines the
minimum solution, min, the minimum value, and err is
always 0, i.e. not used at the moment.
Note
Slower than the Hungarian algorithm in package clue.
References
Burkard, R., M. Dell'Amico, and S. Martello (2009). Assignment Problems. Society for Industrial and Applied Mathematics (SIAM).
Martello, S., and P. Toth (1990). Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, Ltd.
See Also
clue::solve_LSAP
Examples
## Example similar to clue::solve_LSAP
set.seed(8237)
x <- matrix(sample(1:100), nrow = 10)
y <- assignment(x)
# show permutation and check minimum sum
y$perm # 7 6 10 5 8 2 1 4 9 3
y$min # 173
z <- cbind(1:10, y$perm)
x[z] # 16 9 49 6 17 14 1 44 10 7
y$min == sum(x[z]) # TRUE
## Not run:
## Example: minimize sum of distances of complex points
n <- 100
x <- rt(n, df=3) + 1i * rt(n, df=3)
y <- runif(n) + 1i * runif(n)
cmat <- round(outer(x, y, FUN = function(x,y) Mod(x - y)), 2)
system.time(T1 <- assignment(cmat)) # elapsed: 0.003
T1$min / 100 # 145.75
## Hungarian algorithm in package 'clue'
library("clue")
system.time(T2 <- solve_LSAP(cmat)) # elapsed: 0.014
sum(cmat[cbind(1:n, T2)]) # 145.75
## End(Not run)