assignment {adagio} | R Documentation |
Linear Sum Assignment Problem
Description
Linear (sum) assignment problem, or LSAP.
Usage
assignment(cmat, dir = "min")
Arguments
cmat |
quadratic (numeric) matrix, the cost matrix. |
dir |
direction, can be "min" or "max". |
Details
Solves the linear (sum) assignment problem for quadratic matrices.
Uses the lp.assign
function from the lpSolve
package,
that is it solves LSAP as a mixed integer linear programming problem.
Value
List with components perm
, the permutation that defines the
minimum solution, min
, the minimum value, and err
is
always 0
, i.e. not used at the moment.
Note
Slower than the Hungarian algorithm in package clue
.
References
Burkard, R., M. Dell'Amico, and S. Martello (2009). Assignment Problems. Society for Industrial and Applied Mathematics (SIAM).
Martello, S., and P. Toth (1990). Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, Ltd.
See Also
clue::solve_LSAP
Examples
## Example similar to clue::solve_LSAP
set.seed(8237)
x <- matrix(sample(1:100), nrow = 10)
y <- assignment(x)
# show permutation and check minimum sum
y$perm # 7 6 10 5 8 2 1 4 9 3
y$min # 173
z <- cbind(1:10, y$perm)
x[z] # 16 9 49 6 17 14 1 44 10 7
y$min == sum(x[z]) # TRUE
## Not run:
## Example: minimize sum of distances of complex points
n <- 100
x <- rt(n, df=3) + 1i * rt(n, df=3)
y <- runif(n) + 1i * runif(n)
cmat <- round(outer(x, y, FUN = function(x,y) Mod(x - y)), 2)
system.time(T1 <- assignment(cmat)) # elapsed: 0.003
T1$min / 100 # 145.75
## Hungarian algorithm in package 'clue'
library("clue")
system.time(T2 <- solve_LSAP(cmat)) # elapsed: 0.014
sum(cmat[cbind(1:n, T2)]) # 145.75
## End(Not run)