| SingleParameterPareto {actuar} | R Documentation |
The Single-parameter Pareto Distribution
Description
Density function, distribution function, quantile function, random generation,
raw moments, and limited moments for the Single-parameter Pareto
distribution with parameter shape.
Usage
dpareto1(x, shape, min, log = FALSE)
ppareto1(q, shape, min, lower.tail = TRUE, log.p = FALSE)
qpareto1(p, shape, min, lower.tail = TRUE, log.p = FALSE)
rpareto1(n, shape, min)
mpareto1(order, shape, min)
levpareto1(limit, shape, min, order = 1)
Arguments
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape |
parameter. Must be strictly positive. |
min |
lower bound of the support of the distribution. |
log, log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. |
limit |
limit of the loss variable. |
Details
The single-parameter Pareto, or Pareto I, distribution with parameter
shape = \alpha has density:
f(x) = \frac{\alpha \theta^\alpha}{x^{\alpha + 1}}
for x > \theta, \alpha > 0 and \theta >
0.
Although there appears to be two parameters, only shape is a true
parameter. The value of min = \theta must be set in
advance.
The kth raw moment of the random variable X is
E[X^k], k < \alpha and the kth
limited moment at some limit d is E[\min(X, d)^k], x \ge \theta.
Value
dpareto1 gives the density,
ppareto1 gives the distribution function,
qpareto1 gives the quantile function,
rpareto1 generates random deviates,
mpareto1 gives the kth raw moment, and
levpareto1 gives the kth moment of the limited loss
variable.
Invalid arguments will result in return value NaN, with a warning.
Note
For Pareto distributions, we use the classification of Arnold (2015) with the parametrization of Klugman et al. (2012).
The "distributions" package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
References
Arnold, B.C. (2015), Pareto Distributions, Second Edition, CRC Press.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
See Also
dpareto for the two-parameter Pareto distribution.
Examples
exp(dpareto1(5, 3, 4, log = TRUE))
p <- (1:10)/10
ppareto1(qpareto1(p, 2, 3), 2, 3)
mpareto1(2, 3, 4) - mpareto(1, 3, 4) ^ 2
levpareto(10, 3, 4, order = 2)