| PhaseType {actuar} | R Documentation |
The Phase-type Distribution
Description
Density, distribution function, random generation, raw moments and
moment generating function for the (continuous) Phase-type
distribution with parameters prob and rates.
Usage
dphtype(x, prob, rates, log = FALSE)
pphtype(q, prob, rates, lower.tail = TRUE, log.p = FALSE)
rphtype(n, prob, rates)
mphtype(order, prob, rates)
mgfphtype(t, prob, rates, log = FALSE)
Arguments
x, q |
vector of quantiles. |
n |
number of observations. If |
prob |
vector of initial probabilities for each of the transient
states of the underlying Markov chain. The initial probability of
the absorbing state is |
rates |
square matrix of the rates of transition among the states of the underlying Markov chain. |
log, log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. |
t |
numeric vector. |
Details
The phase-type distribution with parameters prob = \pi and rates = \boldsymbol{T} has density:
f(x) = \pi e^{\boldsymbol{T} x} \boldsymbol{t}
for x \ge 0 and f(0) = 1 - \pi \boldsymbol{e}, where
\boldsymbol{e}
is a column vector with all components equal to one,
\boldsymbol{t} = -\boldsymbol{T} \boldsymbol{e}
is the exit rates vector and
e^{\boldsymbol{T}x}
denotes the matrix exponential of \boldsymbol{T}x. The
matrix exponential of a matrix \boldsymbol{M} is defined as
the Taylor series
e^{\boldsymbol{M}} = \sum_{n = 0}^{\infty}
\frac{\boldsymbol{M}^n}{n!}.
The parameters of the distribution must satisfy
\pi \boldsymbol{e} \leq 1,
\boldsymbol{T}_{ii} < 0,
\boldsymbol{T}_{ij} \geq 0 and
\boldsymbol{T} \boldsymbol{e} \leq 0.
The kth raw moment of the random variable X is
E[X^k] and the moment generating function is
E[e^{tX}].
Value
dphasetype gives the density,
pphasetype gives the distribution function,
rphasetype generates random deviates,
mphasetype gives the kth raw moment, and
mgfphasetype gives the moment generating function in x.
Invalid arguments will result in return value NaN, with a warning.
Note
The "distributions" package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca and Christophe Dutang
References
https://en.wikipedia.org/wiki/Phase-type_distribution
Neuts, M. F. (1981), Generating random variates from a distribution of phase type, WSC '81: Proceedings of the 13th conference on Winter simulation, IEEE Press.
Examples
## Erlang(3, 2) distribution
T <- cbind(c(-2, 0, 0), c(2, -2, 0), c(0, 2, -2))
pi <- c(1,0,0)
x <- 0:10
dphtype(x, pi, T) # density
dgamma(x, 3, 2) # same
pphtype(x, pi, T) # cdf
pgamma(x, 3, 2) # same
rphtype(10, pi, T) # random values
mphtype(1, pi, T) # expected value
curve(mgfphtype(x, pi, T), from = -10, to = 1)