| Pareto3 {actuar} | R Documentation |
The Pareto III Distribution
Description
Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Pareto III distribution with
parameters min, shape and scale.
Usage
dpareto3(x, min, shape, rate = 1, scale = 1/rate,
log = FALSE)
ppareto3(q, min, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qpareto3(p, min, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rpareto3(n, min, shape, rate = 1, scale = 1/rate)
mpareto3(order, min, shape, rate = 1, scale = 1/rate)
levpareto3(limit, min, shape, rate = 1, scale = 1/rate,
order = 1)
Arguments
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
min |
lower bound of the support of the distribution. |
shape, scale |
parameters. Must be strictly positive. |
rate |
an alternative way to specify the scale. |
log, log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. |
limit |
limit of the loss variable. |
Details
The Pareto III (or “type III”) distribution with parameters
min = \mu,
shape = \gamma and
scale = \theta has density:
f(x) = \frac{\gamma ((x - \mu)/\theta)^{\gamma - 1}}{%
\theta [1 + ((x - \mu)/\theta)^\gamma]^2}
for x > \mu, -\infty < \mu < \infty,
\gamma > 0 and \theta > 0.
The Pareto III is the distribution of the random variable
\mu + \theta \left(\frac{X}{1 - X}\right)^{1/\gamma},
where X has a uniform distribution on (0, 1). It derives
from the Feller-Pareto
distribution with \alpha = \tau = 1.
Setting \mu = 0 yields the loglogistic
distribution.
The kth raw moment of the random variable X is
E[X^k] for nonnegative integer values of k <
\gamma.
The kth limited moment at some limit d is E[\min(X,
d)^k] for nonnegative integer values of k
and 1 - j/\gamma, j = 1, \dots, k
not a negative integer.
Value
dpareto3 gives the density,
ppareto3 gives the distribution function,
qpareto3 gives the quantile function,
rpareto3 generates random deviates,
mpareto3 gives the kth raw moment, and
levpareto3 gives the kth moment of the limited loss
variable.
Invalid arguments will result in return value NaN, with a warning.
Note
levpareto3 computes the limited expected value using
betaint.
For Pareto distributions, we use the classification of Arnold (2015) with the parametrization of Klugman et al. (2012).
The "distributions" package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca
References
Arnold, B.C. (2015), Pareto Distributions, Second Edition, CRC Press.
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
See Also
dllogis for the loglogistic distribution.
Examples
exp(dpareto3(1, min = 10, 3, 4, log = TRUE))
p <- (1:10)/10
ppareto3(qpareto3(p, min = 10, 2, 3), min = 10, 2, 3)
## mean
mpareto3(1, min = 10, 2, 3)
## case with 1 - order/shape > 0
levpareto3(20, min = 10, 2, 3, order = 1)
## case with 1 - order/shape < 0
levpareto3(20, min = 10, 2/3, 3, order = 1)