| Paralogistic {actuar} | R Documentation | 
The Paralogistic Distribution
Description
Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Paralogistic distribution with
parameters shape and scale.
Usage
dparalogis(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pparalogis(q, shape, rate = 1, scale = 1/rate,
           lower.tail = TRUE, log.p = FALSE)
qparalogis(p, shape, rate = 1, scale = 1/rate,
           lower.tail = TRUE, log.p = FALSE)
rparalogis(n, shape, rate = 1, scale = 1/rate)
mparalogis(order, shape, rate = 1, scale = 1/rate)
levparalogis(limit, shape, rate = 1, scale = 1/rate,
             order = 1)
Arguments
| x,q | vector of quantiles. | 
| p | vector of probabilities. | 
| n | number of observations. If  | 
| shape,scale | parameters. Must be strictly positive. | 
| rate | an alternative way to specify the scale. | 
| log,log.p | logical; if  | 
| lower.tail | logical; if  | 
| order | order of the moment. | 
| limit | limit of the loss variable. | 
Details
The paralogistic distribution with parameters shape =
    \alpha and scale = \theta has density:
f(x) = \frac{\alpha^2 (x/\theta)^\alpha}{%
      x [1 + (x/\theta)^\alpha)^{\alpha + 1}}
for x > 0, \alpha > 0 and \theta > 0.
The kth raw moment of the random variable X is
E[X^k], -\alpha < k < \alpha^2.
The kth limited moment at some limit d is E[\min(X,
  d)^k], k > -\alpha
and \alpha - k/\alpha not a negative integer.
Value
dparalogis gives the density,
pparalogis gives the distribution function,
qparalogis gives the quantile function,
rparalogis generates random deviates,
mparalogis gives the kth raw moment, and
levparalogis gives the kth moment of the limited loss
variable.
Invalid arguments will result in return value NaN, with a warning.
Note
levparalogis computes the limited expected value using
betaint.
See Kleiber and Kotz (2003) for alternative names and parametrizations.
The "distributions" package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
References
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
Examples
exp(dparalogis(2, 3, 4, log = TRUE))
p <- (1:10)/10
pparalogis(qparalogis(p, 2, 3), 2, 3)
## variance
mparalogis(2, 2, 3) - mparalogis(1, 2, 3)^2
## case with shape - order/shape > 0
levparalogis(10, 2, 3, order = 2)
## case with shape - order/shape < 0
levparalogis(10, 1.25, 3, order = 2)