| Loggamma {actuar} | R Documentation | 
The Loggamma Distribution
Description
Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Loggamma distribution with
parameters shapelog and ratelog.
Usage
dlgamma(x, shapelog, ratelog, log = FALSE)
plgamma(q, shapelog, ratelog, lower.tail = TRUE, log.p = FALSE)
qlgamma(p, shapelog, ratelog, lower.tail = TRUE, log.p = FALSE)
rlgamma(n, shapelog, ratelog)
mlgamma(order, shapelog, ratelog)
levlgamma(limit, shapelog, ratelog, order = 1)
Arguments
x, q | 
 vector of quantiles.  | 
p | 
 vector of probabilities.  | 
n | 
 number of observations. If   | 
shapelog, ratelog | 
 parameters. Must be strictly positive.  | 
log, log.p | 
 logical; if   | 
lower.tail | 
 logical; if   | 
order | 
 order of the moment.  | 
limit | 
 limit of the loss variable.  | 
Details
The loggamma distribution with parameters shapelog =
    \alpha and ratelog = \lambda has density:
f(x) = \frac{\lambda^\alpha}{\Gamma(\alpha)}%
    \frac{(\log x)^{\alpha - 1}}{x^{\lambda + 1}}
for x > 1, \alpha > 0 and \lambda > 0.
(Here \Gamma(\alpha) is the function implemented
by R's gamma() and defined in its help.)
The loggamma is the distribution of the random variable
e^X,  where X has a gamma distribution with
shape parameter alpha and scale parameter
1/\lambda.
The kth raw moment of the random variable X is
E[X^k] and the kth limited moment at some limit
d is E[\min(X, d)^k], k < \lambda.
Value
dlgamma gives the density,
plgamma gives the distribution function,
qlgamma gives the quantile function,
rlgamma generates random deviates,
mlgamma gives the kth raw moment, and
levlgamma gives the kth moment of the limited loss
variable.
Invalid arguments will result in return value NaN, with a warning.
Note
The "distributions" package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
References
Hogg, R. V. and Klugman, S. A. (1984), Loss Distributions, Wiley.
Examples
exp(dlgamma(2, 3, 4, log = TRUE))
p <- (1:10)/10
plgamma(qlgamma(p, 2, 3), 2, 3)
mlgamma(2, 3, 4) - mlgamma(1, 3, 4)^2
levlgamma(10, 3, 4, order = 2)