InverseWeibull {actuar} | R Documentation |
The Inverse Weibull Distribution
Description
Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Inverse Weibull distribution
with parameters shape
and scale
.
Usage
dinvweibull(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pinvweibull(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvweibull(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvweibull(n, shape, rate = 1, scale = 1/rate)
minvweibull(order, shape, rate = 1, scale = 1/rate)
levinvweibull(limit, shape, rate = 1, scale = 1/rate,
order = 1)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape , scale |
parameters. Must be strictly positive. |
rate |
an alternative way to specify the scale. |
log , log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. |
limit |
limit of the loss variable. |
Details
The inverse Weibull distribution with parameters shape
=
\tau
and scale
= \theta
has density:
f(x) = \frac{\tau (\theta/x)^\tau e^{-(\theta/x)^\tau}}{x}
for x > 0
, \tau > 0
and \theta > 0
.
The special case shape == 1
is an
Inverse Exponential distribution.
The k
th raw moment of the random variable X
is
E[X^k]
, k < \tau
, and the k
th
limited moment at some limit d
is E[\min(X, d)^k]
, all k
.
Value
dinvweibull
gives the density,
pinvweibull
gives the distribution function,
qinvweibull
gives the quantile function,
rinvweibull
generates random deviates,
minvweibull
gives the k
th raw moment, and
levinvweibull
gives the k
th moment of the limited loss
variable.
Invalid arguments will result in return value NaN
, with a warning.
Note
levinvweibull
computes the limited expected value using
gammainc
from package expint.
Distribution also knonw as the log-Gompertz. See also Kleiber and Kotz (2003) for alternative names and parametrizations.
The "distributions"
package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
References
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
Examples
exp(dinvweibull(2, 3, 4, log = TRUE))
p <- (1:10)/10
pinvweibull(qinvweibull(p, 2, 3), 2, 3)
mlgompertz(-1, 3, 3)
levinvweibull(10, 2, 3, order = 1)