InverseParalogistic {actuar} | R Documentation |
The Inverse Paralogistic Distribution
Description
Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Inverse Paralogistic
distribution with parameters shape
and scale
.
Usage
dinvparalogis(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pinvparalogis(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvparalogis(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvparalogis(n, shape, rate = 1, scale = 1/rate)
minvparalogis(order, shape, rate = 1, scale = 1/rate)
levinvparalogis(limit, shape, rate = 1, scale = 1/rate,
order = 1)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape , scale |
parameters. Must be strictly positive. |
rate |
an alternative way to specify the scale. |
log , log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. |
limit |
limit of the loss variable. |
Details
The inverse paralogistic distribution with parameters shape
= \tau
and scale
= \theta
has density:
f(x) = \frac{\tau^2 (x/\theta)^{\tau^2}}{%
x [1 + (x/\theta)^\tau]^{\tau + 1}}
for x > 0
, \tau > 0
and \theta > 0
.
The k
th raw moment of the random variable X
is
E[X^k]
, -\tau^2 < k < \tau
.
The k
th limited moment at some limit d
is E[\min(X,
d)^k]
, k > -\tau^2
and 1 - k/\tau
not a negative integer.
Value
dinvparalogis
gives the density,
pinvparalogis
gives the distribution function,
qinvparalogis
gives the quantile function,
rinvparalogis
generates random deviates,
minvparalogis
gives the k
th raw moment, and
levinvparalogis
gives the k
th moment of the limited loss
variable.
Invalid arguments will result in return value NaN
, with a warning.
Note
levinvparalogis
computes computes the limited expected value using
betaint
.
See Kleiber and Kotz (2003) for alternative names and parametrizations.
The "distributions"
package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
References
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
Examples
exp(dinvparalogis(2, 3, 4, log = TRUE))
p <- (1:10)/10
pinvparalogis(qinvparalogis(p, 2, 3), 2, 3)
## first negative moment
minvparalogis(-1, 2, 2)
## case with 1 - order/shape > 0
levinvparalogis(10, 2, 2, order = 1)
## case with 1 - order/shape < 0
levinvparalogis(10, 2/3, 2, order = 1)