InverseGaussian {actuar} | R Documentation |
The Inverse Gaussian Distribution
Description
Density function, distribution function, quantile function, random
generation, raw moments, limited moments and moment generating
function for the Inverse Gaussian distribution with parameters
mean
and shape
.
Usage
dinvgauss(x, mean, shape = 1, dispersion = 1/shape,
log = FALSE)
pinvgauss(q, mean, shape = 1, dispersion = 1/shape,
lower.tail = TRUE, log.p = FALSE)
qinvgauss(p, mean, shape = 1, dispersion = 1/shape,
lower.tail = TRUE, log.p = FALSE,
tol = 1e-14, maxit = 100, echo = FALSE, trace = echo)
rinvgauss(n, mean, shape = 1, dispersion = 1/shape)
minvgauss(order, mean, shape = 1, dispersion = 1/shape)
levinvgauss(limit, mean, shape = 1, dispersion = 1/shape, order = 1)
mgfinvgauss(t, mean, shape = 1, dispersion = 1/shape, log = FALSE)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
mean , shape |
parameters. Must be strictly positive. Infinite values are supported. |
dispersion |
an alternative way to specify the shape. |
log , log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. Only |
limit |
limit of the loss variable. |
tol |
small positive value. Tolerance to assess convergence in the Newton computation of quantiles. |
maxit |
positive integer; maximum number of recursions in the Newton computation of quantiles. |
echo , trace |
logical; echo the recursions to screen in the Newton computation of quantiles. |
t |
numeric vector. |
Details
The inverse Gaussian distribution with parameters mean
=
\mu
and dispersion
= \phi
has density:
f(x) = \left( \frac{1}{2 \pi \phi x^3} \right)^{1/2}
\exp\left( -\frac{(x - \mu)^2}{2 \mu^2 \phi x} \right),
for x \ge 0
, \mu > 0
and \phi > 0
.
The limiting case \mu = \infty
is an inverse
chi-squared distribution (or inverse gamma with shape
=
1/2
and rate
= 2
phi
). This distribution has no
finite strictly positive, integer moments.
The limiting case \phi = 0
is an infinite spike in x = 0
.
If the random variable X
is IG(\mu, \phi)
, then
X/\mu
is IG(1, \phi \mu)
.
The k
th raw moment of the random variable X
is
E[X^k]
, k = 1, 2, \dots
, the limited expected
value at some limit d
is E[\min(X, d)]
and
the moment generating function is E[e^{tX}]
.
The moment generating function of the inverse guassian is defined for
t <= 1/(2 * mean^2 * phi)
.
Value
dinvgauss
gives the density,
pinvgauss
gives the distribution function,
qinvgauss
gives the quantile function,
rinvgauss
generates random deviates,
minvgauss
gives the k
th raw moment,
levinvgauss
gives the limited expected value, and
mgfinvgauss
gives the moment generating function in t
.
Invalid arguments will result in return value NaN
, with a warning.
Note
Functions dinvgauss
, pinvgauss
and qinvgauss
are
C implementations of functions of the same name in package
statmod; see Giner and Smyth (2016).
Devroye (1986, chapter 4) provides a nice presentation of the algorithm to generate random variates from an inverse Gaussian distribution.
The "distributions"
package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca
References
Giner, G. and Smyth, G. K. (2016), “statmod: Probability Calculations for the Inverse Gaussian Distribution”, R Journal, vol. 8, no 1, p. 339-351. https://journal.r-project.org/archive/2016-1/giner-smyth.pdf
Chhikara, R. S. and Folk, T. L. (1989), The Inverse Gaussian Distribution: Theory, Methodology and Applications, Decker.
Devroye, L. (1986), Non-Uniform Random Variate Generation, Springer-Verlag. http://luc.devroye.org/rnbookindex.html
See Also
dinvgamma
for the inverse gamma distribution.
Examples
dinvgauss(c(-1, 0, 1, 2, Inf), mean = 1.5, dis = 0.7)
dinvgauss(c(-1, 0, 1, 2, Inf), mean = Inf, dis = 0.7)
dinvgauss(c(-1, 0, 1, 2, Inf), mean = 1.5, dis = Inf) # spike at zero
## Typical graphical representations of the inverse Gaussian
## distribution. First fixed mean and varying shape; second
## varying mean and fixed shape.
col = c("red", "blue", "green", "cyan", "yellow", "black")
par = c(0.125, 0.5, 1, 2, 8, 32)
curve(dinvgauss(x, 1, par[1]), from = 0, to = 2, col = col[1])
for (i in 2:6)
curve(dinvgauss(x, 1, par[i]), add = TRUE, col = col[i])
curve(dinvgauss(x, par[1], 1), from = 0, to = 2, col = col[1])
for (i in 2:6)
curve(dinvgauss(x, par[i], 1), add = TRUE, col = col[i])
pinvgauss(qinvgauss((1:10)/10, 1.5, shape = 2), 1.5, 2)
minvgauss(1:4, 1.5, 2)
levinvgauss(c(0, 0.5, 1, 1.2, 10, Inf), 1.5, 2)