InverseBurr {actuar}R Documentation

The Inverse Burr Distribution

Description

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Inverse Burr distribution with parameters shape1, shape2 and scale.

Usage

dinvburr(x, shape1, shape2, rate = 1, scale = 1/rate,
         log = FALSE)
pinvburr(q, shape1, shape2, rate = 1, scale = 1/rate,
         lower.tail = TRUE, log.p = FALSE)
qinvburr(p, shape1, shape2, rate = 1, scale = 1/rate,
         lower.tail = TRUE, log.p = FALSE)
rinvburr(n, shape1, shape2, rate = 1, scale = 1/rate)
minvburr(order, shape1, shape2, rate = 1, scale = 1/rate)
levinvburr(limit, shape1, shape2, rate = 1, scale = 1/rate,
           order = 1)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

shape1, shape2, scale

parameters. Must be strictly positive.

rate

an alternative way to specify the scale.

log, log.p

logical; if TRUE, probabilities/densities pp are returned as log(p)\log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

order

order of the moment.

limit

limit of the loss variable.

Details

The inverse Burr distribution with parameters shape1 =τ= \tau, shape2 =γ= \gamma and scale =θ= \theta, has density:

f(x)=τγ(x/θ)γτx[1+(x/θ)γ]τ+1f(x) = \frac{\tau \gamma (x/\theta)^{\gamma \tau}}{% x [1 + (x/\theta)^\gamma]^{\tau + 1}}

for x>0x > 0, τ>0\tau > 0, γ>0\gamma > 0 and θ>0\theta > 0.

The inverse Burr is the distribution of the random variable

θ(X1X)1/γ,\theta \left(\frac{X}{1 - X}\right)^{1/\gamma},

where XX has a beta distribution with parameters τ\tau and 11.

The inverse Burr distribution has the following special cases:

The kkth raw moment of the random variable XX is E[Xk]E[X^k], τγ<k<γ-\tau\gamma < k < \gamma.

The kkth limited moment at some limit dd is E[min(X,d)k]E[\min(X, d)^k], k>τγk > -\tau\gamma and 1k/γ1 - k/\gamma not a negative integer.

Value

dinvburr gives the density, invburr gives the distribution function, qinvburr gives the quantile function, rinvburr generates random deviates, minvburr gives the kkth raw moment, and levinvburr gives the kkth moment of the limited loss variable.

Invalid arguments will result in return value NaN, with a warning.

Note

levinvburr computes the limited expected value using betaint.

Also known as the Dagum distribution. See also Kleiber and Kotz (2003) for alternative names and parametrizations.

The "distributions" package vignette provides the interrelations between the continuous size distributions in actuar and the complete formulas underlying the above functions.

Author(s)

Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon

References

Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.

Examples

exp(dinvburr(2, 2, 3, 1, log = TRUE))
p <- (1:10)/10
pinvburr(qinvburr(p, 2, 3, 1), 2, 3, 1)

## variance
minvburr(2, 2, 3, 1) - minvburr(1, 2, 3, 1) ^ 2

## case with 1 - order/shape2 > 0
levinvburr(10, 2, 3, 1, order = 2)

## case with 1 - order/shape2 < 0
levinvburr(10, 2, 1.5, 1, order = 2)

[Package actuar version 3.3-4 Index]