InverseBurr {actuar} | R Documentation |
The Inverse Burr Distribution
Description
Density function, distribution function, quantile function, random
generation, raw moments and limited moments for the Inverse Burr
distribution with parameters shape1
, shape2
and
scale
.
Usage
dinvburr(x, shape1, shape2, rate = 1, scale = 1/rate,
log = FALSE)
pinvburr(q, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvburr(p, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvburr(n, shape1, shape2, rate = 1, scale = 1/rate)
minvburr(order, shape1, shape2, rate = 1, scale = 1/rate)
levinvburr(limit, shape1, shape2, rate = 1, scale = 1/rate,
order = 1)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape1 , shape2 , scale |
parameters. Must be strictly positive. |
rate |
an alternative way to specify the scale. |
log , log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. |
limit |
limit of the loss variable. |
Details
The inverse Burr distribution with parameters shape1
=
\tau
, shape2
= \gamma
and scale
= \theta
, has density:
f(x) = \frac{\tau \gamma (x/\theta)^{\gamma \tau}}{%
x [1 + (x/\theta)^\gamma]^{\tau + 1}}
for x > 0
, \tau > 0
, \gamma > 0
and
\theta > 0
.
The inverse Burr is the distribution of the random variable
\theta \left(\frac{X}{1 - X}\right)^{1/\gamma},
where X
has a beta distribution with parameters \tau
and 1
.
The inverse Burr distribution has the following special cases:
A Loglogistic distribution when
shape1 == 1
;An Inverse Pareto distribution when
shape2 == 1
;An Inverse Paralogistic distribution when
shape1 == shape2
.
The k
th raw moment of the random variable X
is
E[X^k]
, -\tau\gamma < k < \gamma
.
The k
th limited moment at some limit d
is E[\min(X,
d)^k]
, k > -\tau\gamma
and 1 - k/\gamma
not a negative integer.
Value
dinvburr
gives the density,
invburr
gives the distribution function,
qinvburr
gives the quantile function,
rinvburr
generates random deviates,
minvburr
gives the k
th raw moment, and
levinvburr
gives the k
th moment of the limited loss
variable.
Invalid arguments will result in return value NaN
, with a warning.
Note
levinvburr
computes the limited expected value using
betaint
.
Also known as the Dagum distribution. See also Kleiber and Kotz (2003) for alternative names and parametrizations.
The "distributions"
package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
References
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
Examples
exp(dinvburr(2, 2, 3, 1, log = TRUE))
p <- (1:10)/10
pinvburr(qinvburr(p, 2, 3, 1), 2, 3, 1)
## variance
minvburr(2, 2, 3, 1) - minvburr(1, 2, 3, 1) ^ 2
## case with 1 - order/shape2 > 0
levinvburr(10, 2, 3, 1, order = 2)
## case with 1 - order/shape2 < 0
levinvburr(10, 2, 1.5, 1, order = 2)