| Gumbel {actuar} | R Documentation |
The Gumbel Distribution
Description
Density function, distribution function, quantile function, random
generation and raw moments for the Gumbel extreme value distribution
with parameters alpha and scale.
Usage
dgumbel(x, alpha, scale, log = FALSE)
pgumbel(q, alpha, scale, lower.tail = TRUE, log.p = FALSE)
qgumbel(p, alpha, scale, lower.tail = TRUE, log.p = FALSE)
rgumbel(n, alpha, scale)
mgumbel(order, alpha, scale)
mgfgumbel(t, alpha, scale, log = FALSE)
Arguments
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
location parameter. |
scale |
parameter. Must be strictly positive. |
log, log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. Only values |
t |
numeric vector. |
Details
The Gumbel distribution with parameters alpha =
\alpha and scale = \theta has distribution
function:
F(x) = \exp[-\exp(-(x - \alpha)/\theta)]
for -\infty < x < \infty, -\infty < a <
\infty and \theta > 0.
The mode of the distribution is in \alpha, the mean is
\alpha + \gamma\theta, where \gamma =
0.57721566 is the Euler-Mascheroni constant, and the variance is
\pi^2 \theta^2/6.
Value
dgumbel gives the density,
pgumbel gives the distribution function,
qgumbel gives the quantile function,
rgumbel generates random deviates,
mgumbel gives the kth raw moment, k = 1, 2, and
mgfgamma gives the moment generating function in t.
Invalid arguments will result in return value NaN, with a warning.
Note
Distribution also knonw as the generalized extreme value distribution Type-I.
The "distributions" package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Author(s)
Vincent Goulet vincent.goulet@act.ulaval.ca
References
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
Examples
dgumbel(c(-5, 0, 10, 20), 0.5, 2)
p <- (1:10)/10
pgumbel(qgumbel(p, 2, 3), 2, 3)
curve(pgumbel(x, 0.5, 2), from = -5, to = 20, col = "red")
curve(pgumbel(x, 1.0, 2), add = TRUE, col = "green")
curve(pgumbel(x, 1.5, 3), add = TRUE, col = "blue")
curve(pgumbel(x, 3.0, 4), add = TRUE, col = "cyan")
a <- 3; s <- 4
mgumbel(1, a, s) # mean
a - s * digamma(1) # same
mgumbel(2, a, s) - mgumbel(1, a, s)^2 # variance
(pi * s)^2/6 # same