C_var2 {activegp} | R Documentation |
Alternative Variance of Update
Description
Defined as E[(C - E[C])^2], where A^2 = AA (not elementwise multiplication).
Usage
C_var2(C, xnew, grad = FALSE)
Arguments
C |
A const_C object, the result of a call to |
xnew |
The new design point |
grad |
If |
Value
A real number giving the expected variance of C defined via matrix multiplication given the current design.
References
N. Wycoff, M. Binois, S. Wild (2019+), Sequential Learning of Active Subspaces, preprint.
Examples
################################################################################
### Norm of the variance of C criterion landscape
################################################################################
library(hetGP)
set.seed(42)
nvar <- 2
n <- 20
# theta gives the subspace direction
f <- function(x, theta = pi/6, nugget = 1e-6){
if(is.null(dim(x))) x <- matrix(x, 1)
xact <- cos(theta) * x[,1] - sin(theta) * x[,2]
return(hetGP::f1d(xact) + rnorm(n = nrow(x), sd = rep(nugget, nrow(x))))
}
design <- matrix(signif(runif(nvar*n), 2), ncol = nvar)
response <- apply(design, 1, f)
model <- mleHomGP(design, response, lower = rep(1e-4, nvar),
upper = rep(0.5,nvar), known = list(g = 1e-4))
C_hat <- C_GP(model)
ngrid <- 51
xgrid <- seq(0, 1,, ngrid)
Xgrid <- as.matrix(expand.grid(xgrid, xgrid))
filled.contour(matrix(f(Xgrid), ngrid))
cvar_crit <- function(C, xnew){
return(sqrt(sum(C_var(C, xnew)^2)))
}
Cvar_grid <- apply(Xgrid, 1, cvar_crit, C = C_hat)
filled.contour(matrix(Cvar_grid, ngrid), color.palette = terrain.colors,
plot.axes = {axis(1); axis(2); points(design, pch = 20)})
[Package activegp version 1.1.1 Index]