C_GP_ci {activegp} | R Documentation |
CI on Eigenvalues via Monte Carlo/GP
Description
CI on Eigenvalues via Monte Carlo/GP
Usage
C_GP_ci(model, B = 100)
Arguments
model |
A homGP model |
B |
Monte Carlo iterates |
Value
A list with elements ci giving 95
Examples
################################################################################
## Example of uncertainty quantification on C estimate
################################################################################
library(hetGP); library(lhs)
set.seed(42)
nvar <- 2
n <- 20
nits <- 20
# theta gives the subspace direction
f <- function(x, theta, nugget = 1e-6){
if(is.null(dim(x))) x <- matrix(x, 1)
xact <- cos(theta) * x[,1] - sin(theta) * x[,2]
return(hetGP::f1d(xact) + rnorm(n = nrow(x), sd = rep(nugget, nrow(x))))
}
theta_dir <- pi/6
act_dir <- c(cos(theta_dir), -sin(theta_dir))
# Create design of experiments and initial GP model
design <- X <- matrix(signif(maximinLHS(n, nvar), 2), ncol = nvar)
response <- Y <- apply(design, 1, f, theta = theta_dir)
model <- mleHomGP(design, response, known = list(beta0 = 0))
res <- C_GP_ci(model)
plot(c(1, 2), log(c(mean(res$eigen_draws[,1]), mean(res$eigen_draws[,2]))),
ylim = range(log(res$eigen_draws)), ylab = "Eigenvalue", xlab = "Index")
segments(1, log(res$ci[1,1]), 1, log(res$ci[2,1]))
segments(2, log(res$ci[1,2]), 2, log(res$ci[2,2]))
[Package activegp version 1.1.1 Index]