matthews2013 {acss} | R Documentation |
Data from Experiment 1 in Matthews (2013)
Description
Mean responses on a 6-point scale ("definitely random" to "definitely not random") of participants to 216 strings of length 21.
Usage
matthews2013
Format
A data.frame with 216 rows and 3 variables.
Source
Matthews, W. (2013). Relatively random: Context effects on perceived randomness and predicted outcomes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(5), 1642-1648.
Examples
## Not run:
data(matthews2013)
spans <- 3:11
# note, the next loop takes more than 5 minutes.
for (i in spans) {
matthews2013[,paste0("K2_span", i)] <-
sapply(local_complexity(matthews2013$string, alphabet=2, span = i), mean)
}
lm_list <- vector("list", 8)
for (i in seq_along(spans)) {
lm_list[[i]] <- lm(as.formula(paste0("mean ~ K2_span", spans[i])), matthews2013)
}
plot(spans, sapply(lm_list, function(x) summary(x)$r.squared), type = "o")
# do more predictors increase fit?
require(MASS)
m_initial <- lm(mean ~ 1, matthews2013)
m_step <- stepAIC(m_initial,
scope = as.formula(paste("~", paste(paste0("K2_span", spans),
collapse = "+"))))
summary(m_step)
m_initial2 <- lm(as.formula(paste("mean ~", paste(paste0("K2_span", spans),
collapse = "+"))), matthews2013)
m_step2 <- stepAIC(m_initial2)
summary(m_step2)
## End(Not run)
[Package acss version 0.2-5 Index]