mice.impute.2l.zipln.pmm {accelmissing} | R Documentation |
Imputation by PMM under ZIPLN model.
Description
Imputes univariate missing data using the predictive mean matching (PMM) under the zero-inflated Poisson Log-normal (ZIPLN) model.
Usage
mice.impute.2l.zipln.pmm(y, ry, x, wy=NULL, type, K, zs = zs, D)
Arguments
y |
Incomplete data vector of length n |
ry |
Vector of missing data pattern ( |
x |
Matrix (n by p) of complete covariates |
wy |
defalut wy=NULL |
type |
If |
K |
The number of the lag and lead variables. |
zs |
Matrix (N by 2K+1) with the elements of log(yhat)-log(lambda) (See Lee and Gill, 2016) |
D |
The number of donors to be drawn by predictive mean matching. |
Value
A vector of length nmis
with imputations
Note
This function runs by the argument in mice(..., method="2l.zipln.pmm",...)
Author(s)
Jung Ae Lee <jungaeleeb@gmail.com>
References
[1] Lee JA, Gill J (2016). Missing value imputation for physical activity data measured by accelerometer. Statistical Methods in Medical Research.
[2] van Buuren S, Groothuis-Oudshoorn K (2011). mice: Multivariate imputations by chained equations in R. Journal of Statistical Software.
[3] Kleinke K, Reinecke J (2013). Multiple imputation of incomplete zero-infated count data. Statistica Neerlandica.
See Also
mice
, mice.impute.2l.zip.pmm
, mice.impute.2l.zipln