cc_inference {acca} | R Documentation |
cc_inference
Description
For each pairs of components, it computes p-values to test the null hypothesis of no correlation between components. The p-values are computed following the resampling method developed in Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, 220, 117065. https://doi.org/10.1016/j.neuroimage.2020.117065.
Usage
cc_inference(
mod,
B = 100,
alpha_max = 0.5,
numb_cc = NULL,
resamp_type = "sign-flip",
light = FALSE
)
Arguments
mod |
an |
B |
( |
alpha_max |
stop if p-value > alpha_max ( |
numb_cc |
stop after computing p-values for the first |
resamp_type |
|
light |
If |
Value
It returns an acca
object (see cc
) with p-values for each pair of the numb_cc
components.
Examples
set.seed(1)
X=matrix(rnorm(500),100,5)
Y=matrix(rnorm(700),100,7)
Z=matrix(rnorm(200),100,2)
mod=cc(X,Y,Z)
mod
ccbiplot(mod)
mod=cc_inference(mod, B = 100, numb_cc = 3)
mod