pred.response {abundant} | R Documentation |
Predict the response with the fitted high-dimensional principal fitted components model
Description
Let x\in R^p
denote the values of the p
predictors.
This function computes \widehat E(Y|X=x)
using equation (8.1)
of Cook, Forzani, and Rothman (2012).
Usage
pred.response(fit, newx=NULL)
Arguments
fit |
The object returned by |
newx |
A matrix with |
Details
See Cook, Forzani, and Rothman (2012) for more information.
Value
A vector of response prediction with nrow(newx)
entries.
Author(s)
Adam J. Rothman
References
Cook, R. D., Forzani, L., and Rothman, A. J. (2012). Estimating sufficient reductions of the predictors in abundant high-dimensional regressions. Annals of Statistics 40(1), 353-384.
See Also
Examples
set.seed(1)
n=25
p=50
d=1
true.G = matrix(rnorm(p*d), nrow=p, ncol=d)
y=rnorm(n)
fy = y
E=matrix(rnorm(n*p), nrow=n, ncol=p)
X=fy%*%t(true.G) + E
fit=fit.pfc(X=X, r=4, d=d, y=y, weight.type="diag")
fitted.values=pred.response(fit)
mean((y-fitted.values)^2)
plot(fitted.values, y)
n.new=100
y.new=rnorm(n.new)
fy.new=y.new
E.new=matrix(rnorm(n.new*p), nrow=n.new, ncol=p)
X.new = fy.new%*%t(true.G) + E.new
mean((y.new - pred.response(fit, newx=X.new))^2)
[Package abundant version 1.2 Index]