plot_robustness {abtest} | R Documentation |
Plot Bayes Factor Robustness Check
Description
Function for plotting Bayes factor robustness check results (i.e., prior sensitivity analysis).
Usage
plot_robustness(
x,
bftype = "BF10",
log = FALSE,
mu_range = c(0, 0.3),
sigma_range = c(0.25, 1),
mu_steps = 40,
sigma_steps = 40,
cores = 1,
...
)
Arguments
x |
object of class |
bftype |
character that specifies which Bayes factor is plotted. Either
|
log |
Boolean that specifies whether the log Bayes factor is plotted. |
mu_range |
numeric vector of length two that specifies the range of
|
sigma_range |
numeric vector of length two that specifies the range of
|
mu_steps |
numeric value that specifies in how many discrete steps the
interval |
sigma_steps |
numeric value that specifies in how many discrete steps
the interval |
cores |
number of cores used for the computations. |
... |
further arguments passed to |
Details
The plot shows how the Bayes factor changes as a function of the
normal prior location parameter mu_psi
and the normal prior scale
parameter sigma_psi
(i.e., a prior sensitivity analysis with respect
to the normal prior on the test-relevant log odds ratio).
Value
Returns a data.frame
with the mu_psi
values,
sigma_psi
values, and corresponding (log) Bayes factors.
Author(s)
Quentin F. Gronau
Examples
## Not run:
# synthetic data
data <- list(y1 = 10, n1 = 28, y2 = 14, n2 = 26)
# Bayesian A/B test with default settings
ab <- ab_test(data = data)
# plot robustness check (i.e., prior sensitivity analysis)
p <- plot_robustness(ab)
# returned object contains the Bayes factors for the different prior settings
head(p)
## End(Not run)