| plot_robustness {abtest} | R Documentation | 
Plot Bayes Factor Robustness Check
Description
Function for plotting Bayes factor robustness check results (i.e., prior sensitivity analysis).
Usage
plot_robustness(
  x,
  bftype = "BF10",
  log = FALSE,
  mu_range = c(0, 0.3),
  sigma_range = c(0.25, 1),
  mu_steps = 40,
  sigma_steps = 40,
  cores = 1,
  ...
)
Arguments
x | 
 object of class   | 
bftype | 
 character that specifies which Bayes factor is plotted. Either
  | 
log | 
 Boolean that specifies whether the log Bayes factor is plotted.  | 
mu_range | 
 numeric vector of length two that specifies the range of
  | 
sigma_range | 
 numeric vector of length two that specifies the range of
  | 
mu_steps | 
 numeric value that specifies in how many discrete steps the
interval   | 
sigma_steps | 
 numeric value that specifies in how many discrete steps
the interval   | 
cores | 
 number of cores used for the computations.  | 
... | 
 further arguments passed to   | 
Details
The plot shows how the Bayes factor changes as a function of the
normal prior location parameter mu_psi and the normal prior scale
parameter sigma_psi (i.e., a prior sensitivity analysis with respect
to the normal prior on the test-relevant log odds ratio).
Value
Returns a data.frame with the mu_psi values,
sigma_psi values, and corresponding (log) Bayes factors.
Author(s)
Quentin F. Gronau
Examples
## Not run: 
# synthetic data
data <- list(y1 = 10, n1 = 28, y2 = 14, n2 = 26)
# Bayesian A/B test with default settings
ab <- ab_test(data = data)
# plot robustness check (i.e., prior sensitivity analysis)
p <- plot_robustness(ab)
# returned object contains the Bayes factors for the different prior settings
head(p)
## End(Not run)