PeptideInference {aLFQ} | R Documentation |
Peptide inference for aLFQ import data frame
Description
Peptide inference for aLFQ import data frame.
Usage
## Default S3 method:
PeptideInference(data, transition_topx = 3,
transition_strictness = "strict",transition_summary = "sum",
consensus_proteins = TRUE, consensus_transitions = TRUE, ...)
Arguments
data |
a mandatory data frame containing the |
transition_topx |
a positive integer value of the top x transitions to consider for transition to peptide intensity estimation methods. |
transition_strictness |
whether |
transition_summary |
how to summarize the transition intensities: |
consensus_proteins |
if multiple runs are provided, select identical proteins among all runs. |
consensus_transitions |
if multiple runs are provided, select identical transitions among all runs. |
... |
future extensions. |
Details
The PeptideInference module provides functionality to infer peptide / precursor quantities from the measured precursor or fragment intensities or peptide spectral counts.
Value
A standard aLFQ import data frame on peptide / precursor level.
Author(s)
George Rosenberger gr2578@cumc.columbia.edu
References
Ludwig, C., Claassen, M., Schmidt, A. & Aebersold, R. Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry. Molecular & Cellular Proteomics 11, M111.013987-M111.013987 (2012).
See Also
import
, AbsoluteQuantification
, ALF
, APEX
, apexFeatures
, proteotypic
Examples
data(UPS2MS)
data_PI <- PeptideInference(UPS2_SRM)
print(data_PI)