EST_ZINAR {ZINAR1} | R Documentation |
Parameter Estimation for ZINAR(1) Models
Description
This function uses the EM algorithm to find the maximum likelihood estimates of a ZINAR(1) model.
Usage
EST_ZINAR(y,init = NULL,tol = 1e-05,iter = 1000,model,innovation,desc = FALSE)
Arguments
y |
A vector containing a discrete non-negative time series dataset. |
init |
A vector containing the initial parameters estimates to maximize the likelihood function. If not informed, uses Yule-Walker method to calculate. |
tol |
Tolerance for the convergence of the algorithm. Defaults to 1e-5. |
iter |
Maximum number of iterations of the algorithm. Defaults to 1000. |
model |
Must be "zinar", if the innovation have Zero-Inflated distribution, and "inar", otherwise. |
innovation |
Must be "Po" if Poisson, "NB" if Negative binomial or "GI" if Gaussian inverse. |
desc |
TRUE to plot the exploratory graphs. Defaults to FALSE. |
Value
Returns a list containing the parameters estimates and the number of interactions.
References
Aldo M.; Medina, Francyelle L.; Jales, Isaac C.; Bertail, Patrice. First-order integer valued AR processes with zero-inflated innovations. Cyclostationarity: Theory and Methods, Springer Verlag - 2021, v. 1, p. 19-40.
Examples
# Estimates the parameters of an INAR(1) and a ZINAR(1) models with Poisson innovations
# for the monthly number of drug offenses recorded from January 1990 to December 2001
# in Pittsburgh census tract 2206.
data(PghTracts)
y=ts(PghTracts$DRUGS,start=c(1990,1),end=c(2001,12),frequency=12)
Inar1 = EST_ZINAR(y, init = c(0.3,0.5,2), model = "inar", innovation = "Po",desc = TRUE)
ZIPInar1 = EST_ZINAR(y, init = c(0.3,0.5,2), model = "zinar", innovation = "Po",desc = TRUE)