YaleEnergy {YaleToolkit} | R Documentation |
Monthly energy consumption of Yale residential colleges.
Description
The data set contains monthly energy time series for Yale residential college, from July 1999 through July 2006
Usage
data(YaleEnergy)
Format
A data frame with 1020 observations on the following 18 variables.
name
a factor with levels
BERKELEY
BRANFORD
CALHOUN
DAVENPORT
EZRA STILES
JONATHAN EDWARDS
MORSE
PIERSON
SAYBROOK
SILLIMAN
TIMOTHY DWIGHT
TRUMBULL
address
a factor with levels
189 ELM ST.
205 ELM ST.
241 ELM ST.
242 ELM ST.
248 YORK ST.
261 PARK ST.
302 YORK ST.
345 TEMPLE ST.
505 COLLEGE ST.
70 HIGH ST.
74 HIGH ST.
gsf
gross square footage of the college
EL
electrical consumption in kilowatt hours
ELSQFT
electrical consumption per square foot
CHW
chilled water consumption in tons
SQFTCHW
square feet per ton of chilled water
STEAM
steam consumption in pounds
STEAMSQFT
steam per square foot
MBTU
million British Thermal Units (BTU) from chilled water and steam
MBTUSQFT
million BTUs per square foot
year
year of the record
month
month of the record
lon
degrees longitude of the college
lat
degrees latitude
Source
John W. Emerson, Yale University
Examples
data(YaleEnergy)
whatis(YaleEnergy)
y <- YaleEnergy # This is just for convenience.
esqft <- list(data.frame(y[y$name==y$name[1],"ELSQFT"]),
data.frame(y[y$name==y$name[2],"ELSQFT"]),
data.frame(y[y$name==y$name[3],"ELSQFT"]),
data.frame(y[y$name==y$name[4],"ELSQFT"]),
data.frame(y[y$name==y$name[5],"ELSQFT"]),
data.frame(y[y$name==y$name[6],"ELSQFT"]),
data.frame(y[y$name==y$name[7],"ELSQFT"]),
data.frame(y[y$name==y$name[8],"ELSQFT"]),
data.frame(y[y$name==y$name[9],"ELSQFT"]),
data.frame(y[y$name==y$name[10],"ELSQFT"]),
data.frame(y[y$name==y$name[11],"ELSQFT"]),
data.frame(y[y$name==y$name[12],"ELSQFT"]))
# The sparkmat() command does most of the work:
sparkmat(esqft, locs=data.frame(y$lon, y$lat), new=TRUE,
w=0.002, h=0.0002, just=c("left", "top"))
# We'll add some text for a nice finished product:
grid.text(y[1:12,1], unit(y$lon[1:12]+0.001, "native"),
unit(y$lat[1:12]+0.00003, "native"),
just=c("center", "bottom"), gp=gpar(cex=0.7))
grid.text("Degrees Longitude", 0.5, unit(-2.5, "lines"))
grid.text("Degrees Latitude", unit(-4.5, "lines"), 0.5, rot=90)
grid.text("Monthly Electrical Consumption (KwH/SqFt) of Yale Colleges",
0.5, 0.8, gp=gpar(cex=1, font=2))
grid.text("July 1999 - July 2006",
0.5, 0.74, gp=gpar(cex=1, font=2))