extract.deltas {WrightMap} | R Documentation |
Extract Master's Delta parameters from a TAM model.
Description
This function takes as its input a TAM object. It adds reads the TAM item parameters and organizes them into a matrix that can be used as input in the CCCfit
function.
Usage
extract.deltas(tamObject)
Arguments
tamObject |
TAM object containing the results of a a Rasch model or Partial Credit model. |
Details
This function organizes the item parameter results into a matrix where each row is contains the parameters associated with an item and each columns is contains the parameters associated with a specific step (score 0 vs score 1, score 1 vs score 2, etc.). The resulting matrix will have as many rows as items and as many columns as the maximum number of steps among the items.
Value
A matrix in which each row is an item and each column is a step
Author(s)
David Torres Irribarra
References
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174.
See Also
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (tamObject)
{
delta.long <- tamObject$xsi
n.deltas <- apply(tamObject$B, 1, max)
delta.mat <- matrix(NA, nrow = length(n.deltas), ncol = max(n.deltas))
matCoords.row <- rep(1:length(n.deltas), n.deltas)
matCoords.col <- c()
for (i in 1:length(n.deltas)) {
for (j in 1:n.deltas[i]) {
matCoords.col <- c(matCoords.col, j)
}
}
delta.long$matCoords.row <- matCoords.row
delta.long$matCoords.col <- matCoords.col
for (k in 1:nrow(delta.long)) {
delta.mat[delta.long$matCoords.row[k], delta.long$matCoords.col[k]] <- delta.long$xsi[k]
}
delta.mat
}