HC {WpProj} | R Documentation |
Run the Hahn-Carvalho Method
Description
Runs the Hahn-Carvalho method but adapted to return full distributions.
Usage
HC(
X,
Y = NULL,
theta,
family = "gaussian",
penalty = c("elastic.net", "selection.lasso", "lasso", "ols", "mcp", "scad", "mcp.net",
"scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net",
"grp.scad.net", "sparse.grp.lasso"),
method = c("selection.variable", "projection"),
lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = NULL,
alpha = 1,
gamma = 1,
tau = 0.5,
groups = numeric(0),
penalty.factor = NULL,
group.weights = NULL,
maxit = 500L,
tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001
)
Arguments
X |
Covariates |
Y |
Predictions |
theta |
Parameters |
family |
Family for method. See oem. |
penalty |
Penalty function. See oem. |
method |
Should we run a selection variable methodology or projection? |
lambda |
lambda for lasso. See oem for this and all options below |
nlambda |
Number of lambda values. |
lambda.min.ratio |
Minimum lambda ratio for self selected lambda |
alpha |
elastic net mixing. |
gamma |
tuning parameters for SCAD and MCP |
tau |
mixing parameter for sparse group lasso |
groups |
A vector of grouping values |
penalty.factor |
Penalty factor for OEM. |
group.weights |
Weights for groupped lasso |
maxit |
Max iteration for OEM |
tol |
Tolerance for OEM |
irls.maxit |
IRLS max iterations for OEM |
irls.tol |
IRLS tolerance for OEM |
Value
a WpProj
object with selected covariates and their values
References
Hahn, P. Richard and Carlos M. Carvalho. (2014) "Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective." https://arxiv.org/pdf/1408.0464.pdf
Examples
n <- 32
p <- 10
s <- 99
x <- matrix( 1, nrow = n, ncol = p )
beta <- (1:10)/10
y <- x %*% beta
post_beta <- matrix(beta, nrow=p, ncol=s)
post_mu <- x %*% post_beta
fit <- HC(X=x, Y=post_mu, theta = post_beta,
penalty = "lasso",
method = "projection"
)