AllGenerics_component {WormTensor} | R Documentation |
Components for WormTensor object
Description
These are generic methods for WormTensor
Usage
worm_membership(object, k)
worm_clustering(
object,
algorithm = c("MCMI", "OINDSCAL", "CSPA"),
num.iter = 30,
thr = 1e-10,
verbose = FALSE
)
worm_evaluate(object, labels = NULL)
worm_visualize(
object,
out.dir = tempdir(),
algorithm = c("tSNE", "UMAP"),
seed = 1234,
tsne.dims = 2,
tsne.perplexity = 15,
tsne.verbose = FALSE,
tsne.max_iter = 1000,
umap.n_neighbors = 15,
umap.n_components = 2,
silhouette.summary = FALSE
)
Arguments
object |
WormTensor object |
k |
Assumed number of clusters |
algorithm |
Dimensional reduction methods |
num.iter |
The upper limit of iterations (Default value is 30) |
thr |
The lower limit of relative change in estimates (Default value is 1E-10) |
verbose |
Control message |
labels |
Labels for external evaluation |
out.dir |
Output directory (default: tempdir()) |
seed |
Arguments passed to set.seed (default: 1234) |
tsne.dims |
Output dimensionality (default: 2) |
tsne.perplexity |
Perplexity paramete (default: 15) |
tsne.verbose |
logical; Whether progress updates should be printed (default: TRUE) |
tsne.max_iter |
The number of iterations (default: 1000) |
umap.n_neighbors |
The size of local neighborhood (default: 15) |
umap.n_components |
The dimension of the space to embed into (default: 2) |
silhouette.summary |
logical; If true a summary of cluster silhouettes are printed. |
[Package WormTensor version 0.1.1 Index]