WeightedROC {WeightedROC}R Documentation

WeightedROC

Description

Compute a weighted ROC curve.

Usage

WeightedROC(guess, label, 
    weight = rep(1, length(label)))

Arguments

guess

Numeric vector of scores.

label

True positive/negative labels. A factor with 2 unique values, or integer/numeric with values all in 0=negative,1=positive or 1=negative,2=positive or -1=negative,1=positive.

weight

Positive weights, by default 1.

Value

data.frame with true positive rate (TPR), false positive rate (FPR), weighted false positive count (FP), weighted false negative count (FN), and threshold (smallest guess classified as positive).

Author(s)

Toby Dylan Hocking

Examples


## WeightedROC can compute ROC curves for data sets with variable
## weights.
library(WeightedROC)
y <- c(-1, -1, 1, 1, 1)
w <- c(1, 1, 1, 4, 5)
y.hat <- c(1, 2, 3, 1, 1)
tp.fp <- WeightedROC(y.hat, y, w)
if(require(ggplot2)){
  gg <- ggplot()+
    geom_path(aes(FPR, TPR), data=tp.fp)+
    coord_equal()
  print(gg)
}else{
  plot(TPR~FPR, tp.fp, type="l")
}

## The FN/FP columns can be used to plot weighted error as a
## function of threshold.
error.fun.list <- list(
  FN=function(df)df$FN,
  FP=function(df)df$FP,
  errors=function(df)with(df, FP+FN)
  )
all.error.list <- list()
for(error.type in names(error.fun.list)){
  error.fun <- error.fun.list[[error.type]]
  all.error.list[[error.type]] <-
    data.frame(tp.fp, error.type, weighted.error=error.fun(tp.fp))
}
all.error <- do.call(rbind, all.error.list)
fp.fn.colors <- c(FP="skyblue",
                  FN="#E41A1C",
                  errors="black")
ggplot()+
  scale_color_manual(values=fp.fn.colors)+
  geom_line(aes(threshold, weighted.error, color=error.type),
            data=all.error)

if(require(microbenchmark) && require(ROCR) && require(pROC)){
  
  data(ROCR.simple, envir=environment())
  ## Compare speed and plot ROC curves for the ROCR example data set.
  microbenchmark(WeightedROC={
    tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels))
  }, ROCR={
    pred <- with(ROCR.simple, prediction(predictions, labels))
    perf <- performance(pred, "tpr", "fpr")
  }, pROC.1={
    proc <- roc(labels ~ predictions, ROCR.simple, algorithm=1)
  }, pROC.2={
    proc <- roc(labels ~ predictions, ROCR.simple, algorithm=2)
  }, pROC.3={
    proc <- roc(labels ~ predictions, ROCR.simple, algorithm=3)
  }, times=10)
  perfDF <- function(p){
    data.frame(FPR=p@x.values[[1]], TPR=p@y.values[[1]], package="ROCR")
  }
  procDF <- function(p){
    data.frame(FPR=1-p$specificities, TPR=p$sensitivities, package="pROC")
  }
  roc.curves <- rbind(
    data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"),
    perfDF(perf),
    procDF(proc))
  ggplot()+
    geom_path(aes(FPR, TPR, color=package, linetype=package),
              data=roc.curves, size=1)+
    coord_equal()
  
  ## Compare speed and plot ROC curves for the pROC example data set.
  data(aSAH, envir=environment())
  microbenchmark(WeightedROC={
    tp.fp <- with(aSAH, WeightedROC(s100b, outcome))
  }, ROCR={
    pred <- with(aSAH, prediction(s100b, outcome))
    perf <- performance(pred, "tpr", "fpr")
  }, pROC.1={
    proc <- roc(outcome ~ s100b, aSAH, algorithm=1)
  }, pROC.2={
    proc <- roc(outcome ~ s100b, aSAH, algorithm=2)
  }, pROC.3={
    proc <- roc(outcome ~ s100b, aSAH, algorithm=3)
  }, times=10)
  roc.curves <- rbind(
    data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"),
    perfDF(perf),
    procDF(proc))
  ggplot()+
    geom_path(aes(FPR, TPR, color=package, linetype=package),
              data=roc.curves, size=1)+
    coord_equal()
  
  ## Compute a small ROC curve with 1 tie to show the diagonal.
  y <- c(-1, -1, 1, 1)
  y.hat <- c(1, 2, 3, 1)
  microbenchmark(WeightedROC={
    tp.fp <- WeightedROC(y.hat, y)
  }, ROCR={
    pred <- prediction(y.hat, y)
    perf <- performance(pred, "tpr", "fpr")
  }, pROC.1={
    proc <- roc(y ~ y.hat, algorithm=1)
  }, pROC.2={
    proc <- roc(y ~ y.hat, algorithm=2)
  }, pROC.3={
    proc <- roc(y ~ y.hat, algorithm=3)
  }, times=10)
  roc.curves <- rbind(
    data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"),
    perfDF(perf),
    procDF(proc))
  ggplot()+
    geom_path(aes(FPR, TPR, color=package, linetype=package),
              data=roc.curves, size=1)+
    coord_equal()

}


[Package WeightedROC version 2020.1.31 Index]