plot_wavelet {WaverideR} | R Documentation |
Plots a wavelet power spectra
Description
Plot wavelet spectra using the outcome of the analyze_wavelet
function.
Usage
plot_wavelet(
wavelet = NULL,
lowerPeriod = NULL,
upperPeriod = NULL,
plot.COI = TRUE,
n.levels = 100,
palette_name = "rainbow",
color_brewer = "grDevices",
useRaster = TRUE,
periodlab = "Period (metres)",
x_lab = "depth (metres)",
keep_editable = FALSE,
dev_new = TRUE,
plot_dir = TRUE,
add_lines = NULL,
add_points = NULL,
add_abline_h = NULL,
add_abline_v = NULL,
add_MTM_peaks = FALSE,
add_data = TRUE,
add_avg = FALSE,
add_MTM = FALSE,
siglvl = 0.95,
demean_mtm = TRUE,
detrend_mtm = TRUE,
padfac_mtm = 5,
tbw_mtm = 3,
plot_horizontal = TRUE
)
Arguments
wavelet |
wavelet object created using the |
lowerPeriod |
Lowest period value which will be plotted |
upperPeriod |
Highest period value which will be plotted |
plot.COI |
Option to plot the cone of influence |
n.levels |
Number of color levels |
palette_name |
Name of the color palette which is used for plotting.
The color palettes than can be chosen depends on which the R package is specified in
the color_brewer parameter. The included R packages from which palettes can be chosen
from are; the 'RColorBrewer', 'grDevices', 'ColorRamps' and 'Viridis' R packages.
There are many options to choose from so please
read the documentation of these packages |
color_brewer |
Name of the R package from which the color palette is chosen from.
The included R packages from which palettes can be chosen
are; the RColorBrewer, grDevices, ColorRamps and Viridis R packages.
There are many options to choose from so please
read the documentation of these packages. " |
useRaster |
Plot as a raster or vector image |
periodlab |
Label for the y-axis |
x_lab |
Label for the x-axis |
keep_editable |
Keep option to add extra features after plotting |
dev_new |
Opens a new plotting window to plot the plot, this guarantees a "nice" looking plot however when plotting in an R markdown
document the plot might not plot |
plot_dir |
The direction of the proxy record which is assumed for tuning if time increases with increasing depth/time values
(e.g. bore hole data which gets older with increasing depth ) then plot_dir should be set to TRUE
if time decreases with depth/time values (eg stratospheric logs where 0m is the bottom of the section)
then plot_dir should be set to FALSE |
add_lines |
Add lines to the wavelet plot input should be matrix with first axis being depth/time the columns after that
should be period values |
add_points |
Add points to the wavelet plot input should be matrix with first axis being depth/time and columns after that
should be period values |
add_abline_h |
Add horizontal lines to the plot. Specify the lines as a vector e.g. c(2,3,5,6) |
add_abline_v |
Add vertical lines to the plot. Specify the lines as a vector e.g. c(2,3,5,6) |
add_MTM_peaks |
Add the MTM peak periods as horizontal lines |
add_data |
Plot the data on top of the wavelet |
add_avg |
Plot the average wavelet spectral power to the side of the wavelet |
add_MTM |
Add the MTM plot next to the wavelet plot |
siglvl |
Set the significance level for the MTM analysis (0-1) |
demean_mtm |
Remove mean from data before conducting the MTM analysis |
detrend_mtm |
Remove mean from data before conducting the MTM analysis |
padfac_mtm |
Pad factor for the MTM analysis |
tbw_mtm |
time bandwidth product of the MTM analysis |
plot_horizontal |
plot the wavelet horizontal or vertical eg y axis is depth or y axis power |
Value
The output is a plot of a wavelet spectra. if add_MTM_peaks = TRUE then the output of the MTM analysis will given as matrix
Author(s)
Code based on the analyze.wavelet and wt.image functions of the 'WaveletComp' R package and wt function of the 'biwavelet' R package which are based on the wavelet MATLAB code written by Christopher Torrence and Gibert P. Compo (1998). The MTM analysis is from the astrochron R package of Meyers et al., (2012)
References
Angi Roesch and Harald Schmidbauer (2018). WaveletComp: Computational Wavelet Analysis. R package version 1.1. https://CRAN.R-project.org/package=WaveletComp
Gouhier TC, Grinsted A, Simko V (2021). R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. (Version 0.20.21), https://github.com/tgouhier/biwavelet
Torrence, C., and G. P. Compo. 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society 79:61-78. https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf
Morlet, Jean, Georges Arens, Eliane Fourgeau, and Dominique Glard. "Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. " Geophysics 47, no. 2 (1982): 203-221. https://pubs.geoscienceworld.org/geophysics/article/47/2/203/68601/Wave-propagation-and-sampling-theory-Part-I
J. Morlet, G. Arens, E. Fourgeau, D. Giard; Wave propagation and sampling theory; Part II, Sampling theory and complex waves. Geophysics 1982 47 (2): 222–236. https://pubs.geoscienceworld.org/geophysics/article/47/2/222/68604/Wave-propagation-and-sampling-theory-Part-II
S.R. Meyers, 2012, Seeing Red in Cyclic Stratigraphy: Spectral Noise Estimation for Astrochronology: Paleoceanography, 27, PA3228, <doi:10.1029/2012PA002307>
Examples
#Example 1. A plot of a wavelet spectra using the Total Solar Irradiance
# data set of Steinhilber et al., (2012)
TSI_wt <-
analyze_wavelet(
data = TSI,
dj = 1/200,
lowerPeriod = 16,
upperPeriod = 8192,
verbose = FALSE,
omega_nr = 6
)
plot_wavelet(
wavelet = TSI_wt,
lowerPeriod = NULL,
upperPeriod = NULL,
plot.COI = TRUE,
n.levels = 100,
palette_name = "rainbow",
color_brewer= "grDevices",
useRaster = TRUE,
periodlab = "Period (metres)",
x_lab = "depth (metres)",
keep_editable = FALSE,
dev_new=TRUE,
plot_dir = TRUE,
add_lines = NULL,
add_points= NULL,
add_abline_h = NULL,
add_abline_v = NULL,
add_MTM_peaks = FALSE,
add_data = TRUE,
add_avg = TRUE,
add_MTM = FALSE,
siglvl = 0.95,
demean_mtm = TRUE,
detrend_mtm = TRUE,
padfac_mtm = 5,
tbw_mtm = 3,
plot_horizontal=TRUE)
#Example 2. A plot of a wavelet spectra using the magnetic susceptibility
#data set of Pas et al., (2018)
mag_wt <-
analyze_wavelet(
data = mag,
dj = 1/100,
lowerPeriod = 0.1,
upperPeriod = 254,
verbose = FALSE,
omega_nr = 10
)
plot_wavelet(
wavelet = mag_wt,
lowerPeriod = NULL,
upperPeriod = NULL,
plot.COI = TRUE,
n.levels = 100,
palette_name = "rainbow",
color_brewer= "grDevices",
useRaster = TRUE,
periodlab = "Period (metres)",
x_lab = "depth (metres)",
keep_editable = FALSE,
dev_new=TRUE,
plot_dir = TRUE,
add_lines= NULL,
add_points= NULL,
add_abline_h = NULL,
add_abline_v = NULL,
add_MTM_peaks = FALSE,
add_data = TRUE,
add_avg = TRUE,
add_MTM = FALSE,
siglvl = 0.95,
demean_mtm = TRUE,
detrend_mtm = TRUE,
padfac_mtm = 5,
tbw_mtm = 3,
plot_horizontal=TRUE)
#Example 3. A plot of a wavelet spectra using the greyscale
# data set of Zeeden et al., (2013)
grey_wt <-
analyze_wavelet(
data = grey,
dj = 1/200,
lowerPeriod = 0.02,
upperPeriod = 256,
verbose = FALSE,
omega_nr = 8
)
plot_wavelet(
wavelet = grey_wt,
lowerPeriod = NULL,
upperPeriod = NULL,
plot.COI = TRUE,
n.levels = 100,
palette_name = "rainbow",
color_brewer= "grDevices",
useRaster = TRUE,
periodlab = "Period (metres)",
x_lab = "depth (metres)",
keep_editable = FALSE,
dev_new=TRUE,
plot_dir = TRUE,
add_lines = NULL,
add_points= NULL,
add_abline_h = NULL,
add_abline_v = NULL,
add_MTM_peaks = FALSE,
add_data = TRUE,
add_avg = TRUE,
add_MTM = FALSE,
siglvl = 0.95,
demean_mtm = TRUE,
detrend_mtm = TRUE,
padfac_mtm = 5,
tbw_mtm = 3,
plot_horizontal=TRUE)