analyze_wavelet {WaverideR} | R Documentation |
Conduct the continuous wavelet transform on a time series/signal
Description
Compute the continuous wavelet transform (CWT) using a Morlet wavelet
Usage
analyze_wavelet(
data = NULL,
dj = 1/20,
lowerPeriod = 2,
upperPeriod = 1024,
verbose = FALSE,
omega_nr = 6
)
Arguments
data |
Input data, should be a matrix or data frame in which the first column is depth or time and the second column is proxy record. |
dj |
Spacing between successive scales. The CWT analyses analyses the signal using successive periods
which increase by the power of 2 (e.g.2^0=1,2^1=2,2^2=4,2^3=8,2^4=16). To have more resolution
in-between these steps the dj parameter exists, the dj parameter specifies how many extra steps/spacing in-between
the power of 2 scaled CWT is added. The amount of steps is 1/x with a higher x indicating a smaller spacing.
Increasing the increases the computational time of the CWT |
lowerPeriod |
Lowest period to be analyzed |
upperPeriod |
Upper period to be analyzed |
verbose |
Print text |
omega_nr |
Number of cycles contained within the Morlet wavelet |
Value
The output is a list (wavelet object) which contain 18 objects which are the result of the continuous wavelet transform (CWT). Object 1: Wave - Wave values of the wavelet Object 2: Phase - Phase of the wavelet Object 3: Ampl - Amplitude values of the wavelet Object 4: Power - Power values of the wavelet Object 5: dt - Step size Object 6: dj - Scale size Object 7: Power.avg - Average power values Object 8: Period - Period values Object 9: Scale - Scale value Object 10: coi.1 - Cone of influence values 1 Object 11: coi.2 - Cone of influence values 2 Object 12: nc - Number of columns Object 13: nr - Number of rows Object 14: axis.1 - axis values 1 Object 15: axis.2 - axis values 2 Object 16: omega_nr - Number of cycles in the wavelet Object 17: x - x values of the data set Object 18: y - y values of the data set
Author(s)
Code based on on the analyze.wavelet function of the 'WaveletComp' R package and wt function of the 'biwavelet' R package which are based on the wavelet MATLAB code written by Christopher Torrence and Gibert P. Compo.
References
Angi Roesch and Harald Schmidbauer (2018). WaveletComp: Computational Wavelet Analysis. R package version 1.1. https://CRAN.R-project.org/package=WaveletComp
Gouhier TC, Grinsted A, Simko V (2021). R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. (Version 0.20.21), https://github.com/tgouhier/biwavelet
Torrence, C., and G. P. Compo. 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society 79:61-78. https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf
Morlet, Jean, Georges Arens, Eliane Fourgeau, and Dominique Glard. "Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. " Geophysics 47, no. 2 (1982): 203-221. https://pubs.geoscienceworld.org/geophysics/article/47/2/203/68601/Wave-propagation-and-sampling-theory-Part-I
J. Morlet, G. Arens, E. Fourgeau, D. Giard; Wave propagation and sampling theory; Part II, Sampling theory and complex waves. Geophysics 1982 47 (2): 222–236. https://pubs.geoscienceworld.org/geophysics/article/47/2/222/68604/Wave-propagation-and-sampling-theory-Part-II
Examples
#Example 1. Using the Total Solar Irradiance data set of Steinhilver et al., (2012)
TSI_wt <-
analyze_wavelet(
data = TSI,
dj = 1/200,
lowerPeriod = 16,
upperPeriod = 8192,
verbose = FALSE,
omega_nr = 6
)
#Example 2. Using the magnetic susceptibility data set of Pas et al., (2018)
mag_wt <-
analyze_wavelet(
data = mag,
dj = 1/100,
lowerPeriod = 0.1,
upperPeriod = 254,
verbose = FALSE,
omega_nr = 10
)
#Example 3. Using the greyscale data set of Zeeden et al., (2013)
grey_wt <-
analyze_wavelet(
data = grey,
dj = 1/200,
lowerPeriod = 0.02,
upperPeriod = 256,
verbose = FALSE,
omega_nr = 8
)