WaveletFittingarma {WaveletArima} | R Documentation |
Wavelet-ARIMA hybrid model for forecasting
Description
Fits the time series data by using hybrid Wavelet-ARIMA algorithm.
Usage
WaveletFittingarma(
ts,
filter = "haar",
Waveletlevels,
boundary = "periodic",
FastFlag = TRUE,
MaxARParam,
MaxMAParam,
NForecast
)
Arguments
ts |
univariate time series |
filter |
Wavelet filter use in the decomposition |
Waveletlevels |
The level of wavelet decomposition |
boundary |
The boundary condition of wavelet decomposition |
FastFlag |
The FastFlag condition of wavelet decomposition: True or False |
MaxARParam |
The maximum AR order for auto.arima |
MaxMAParam |
The maximum MA order for auto.arima |
NForecast |
The forecast horizon: A positive integer |
Value
Finalforecast - Forecasted value
FinalPrediction - Predicted value of train data
References
Aminghafari, M. and Poggi, J.M. 2012. Nonstationary time series forecasting using wavelets and kernel smoothing. Communications in Statistics-Theory and Methods, 41(3),485-499.
Paul, R.K. A and Anjoy, P. 2018. Modeling fractionally integrated maximum temperature series in India in presence of structural break. Theory and Applied Climatology 134, 241–249.
Examples
N <- 100
PHI <- 0.2
THETA <- 0.1
SD <- 1
M <- 0
D <- 0.2
Seed <- 123
set.seed(Seed)
Sim.Series <- fracdiff::fracdiff.sim(n = N,ar=c(PHI),ma=c(THETA),d=D,rand.gen =rnorm,sd=SD,mu=M)
simts <- as.ts(Sim.Series$series)
WaveletForecast<-WaveletFittingarma(ts=simts,filter ='la8',Waveletlevels=floor(log(length(simts))),
MaxARParam=5,MaxMAParam=5,NForecast=5)